Improving Christofides' Algorithm for the *s*-*t* Path TSP

Hyung-Chan An

Joint work with Bobby Kleinberg and David Shmoys

Metric TSP

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) (c : E → ℝ₊), find a minimum Hamiltonian circuit
 - Triangle inequality holds
 - Christofides (1976) gave a 3/2-approximation algorithm

Figure from [Dantzig, Fulkerson, Johnson 1954]

Metric TSP

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) (c : E → ℝ₊), find a minimum Hamiltonian circuit
 - Triangle inequality holds
 - Christofides (1976) gave a 3/2-approximation algorithm
 - No better performance guarantee known

Figure from [Dantzig, Fulkerson, Johnson 1954]

Metric s-t Path TSP

- Metric s-t path TSP
 - Given a weighted graph G = (V, E) (c : E → ℝ₊) with endpoints s, t ∈ V, find a minimum s-t Hamiltonian path
 - Triangle inequality holds
 - Hoogeveen (1991) showed that Christofides' algorithm is a 5/3-approximation algorithm and this bound is tight

Figure from [Dantzig, Fulkerson, Johnson 1954]

Our Main Result

Theorem

Christofides' algorithm can be improved to yield a deterministic ϕ -approximation algorithm for the s-t path TSP for an arbitrary metric, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio ($\phi < 1.6181$)

Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP

- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])

Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP

- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])

 Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric

Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP

- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])
- Techniques can be successfully applied to both variants
- Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric
 - Can our techniques be extended to the circuit variant?

Hyung-Chan An Improving Christofides' Algorithm for the *s*-*t* Path TSP

- Find minimum span. tree \mathscr{T}_{\min}
- Augment *𝔅*_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Find minimum span. tree \mathscr{T}_{\min}
- Augment *𝒯*_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Choose random span. tree \mathscr{T}
- Augment 𝒴 into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$ -approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
 - Conjectured (3/2 ϵ)-approx

- Find minimum span. tree \mathscr{T}_{\min}
- Augment *𝒯*_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Choose random span. tree \mathscr{T}
- Augment 𝒴 into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$ -approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
 - Conjectured (3/2 ϵ)-approx
 - Proved for unit-weight graphical metric

- Find minimum span. tree \mathscr{T}_{\min}
- Augment *I*_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Choose random span. tree \mathscr{T}
- Augment 𝒴 into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$ -approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
 - Conjectured (3/2 ϵ)-approx
 - Proved for unit-weight graphical metric
- ϕ -approx for *s*-*t* path TSP
 - Arbitrary metric
 - Simpler random choice

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{\min}

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum perfect matching *M* on *T*

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum perfect matching *M* on *T*

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathcal{T}_{min}
 - Find a minimum perfect matching *M* on *T*
 - Find an Eulerian circuit of *S*_{min} ∪ *M*

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{\min}
 - Find a minimum perfect matching M on T
 - Find an Eulerian circuit of *S*_{min} ∪ *M*
 - Shortcut it into a Hamiltonian circuit H

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in *I*min
 - Find a minimum perfect matching M on T
 - Find an *s*-*t* Eulerian *path* of $\mathscr{T}_{min} \cup M$
 - Shortcut it into an s-t Hamiltonian path

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in *I*min
 - Find a minimum perfect matching M on T
 - Find an *s*-*t* Eulerian *path* of $\mathscr{T}_{\min} \cup M$
 - Shortcut it into an s-t Hamiltonian path

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other add degree vertices in *T*
 - odd-degree vertices in *S*_{min}
 - Find a minimum perfect matching *M* on *T*
 - Find an s-t Eulerian path of *S*_{min} ∪ M
 - Shortcut it into an s-t Hamiltonian path

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other
 - odd-degree vertices in *S*_{min}
 - Find a minimum perfect matching *M* on *T*
 - Find an s-t Eulerian path of *S*_{min} ∪ M
 - Shortcut it into an s-t Hamiltonian path

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other
 - odd-degree vertices in *S*min
 - Find a minimum perfect matching M on T
 - Find an s-t Eulerian path of *S*_{min} ∪ M
 - Shortcut it into an s-t Hamiltonian path

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

- Held-Karp relaxation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})

• Incidence vector
$$\chi_F$$
 of $F \subset E$ is $(\chi_F)_e := \begin{cases} 1 & \text{if } e \in F \\ 0 & \text{otherwise} \end{cases}$

Held-Karp relaxation

For G = (V, E) and $s, t \in V$,

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]

Our Algorithm

- Best-of-Many Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$
 - For each *T_i*:
 - Let T_i be the set of vertices with "wrong" parity of degree:
 i.e., T_i is the set of even-degree endpoints and other odd-degree vertices in S_i
 - Find a minimum perfect matching *M_i* on *T_i*
 - Find an *s*-*t* Eulerian path of $\mathscr{T}_i \cup M_i$
 - Shortcut it into an *s*-*t* Hamiltonian path *H_i*
 - Output the best Hamiltonian path

Randomized Algorithm

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i

 $(\mathbf{x}^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$

Randomized Algorithm

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- E[c(H)] ≤ ρ · OPT ⇒
 Best-of-Many Christofides' Algorithm is ρ-approx. algorithm

Randomized Algorithm

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- E[c(H)] ≤ ρ · OPT ⇒
 Best-of-Many Christofides' Algorithm is ρ-approx. algorithm

•
$$\Pr[e \in \mathscr{T}] = x_e^*$$

Randomized Algorithm

- Sampling Christofides' Algorithm
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i $(x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i})$
- E[c(H)] ≤ ρ · OPT ⇒
 Best-of-Many Christofides' Algorithm is ρ-approx. algorithm
- $\Pr[e \in \mathscr{T}] = x_e^*$
 - $\mathsf{E}[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)$
 - The rest of the analysis focuses on bounding *c*(*M*)

Polyhedral Characterization of Matchings

 Polyhedral characterization of matchings on *T* (assuming triangle inequality) [Edmonds, Johnson 1973]

Polyhedral Characterization of Matchings

 Polyhedral characterization of matchings on T (assuming triangle inequality) [Edmonds, Johnson 1973]

$$\begin{array}{c} \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \bullet & \bullet \\ \end{array} \begin{array}{c} \sum_{e \in \delta(S)} y_e \geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{array}$$

 Call a feasible solution a *fractional matching*; its cost upper-bounds c(M)

• Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Take
$$y := \alpha \chi_{\mathscr{T}} + \beta x^*$$
 for $\alpha = \beta = \frac{1}{3}$

- Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_{\mathscr{T}} + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

$$(\text{Matching}) \quad \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^{\mathcal{E}} \end{cases}$$

(Held-Karp)

• Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Take
$$y := \alpha \chi_{\mathscr{T}} + \beta x^*$$
 for $\alpha = \beta = \frac{1}{3}$
LB on *T*-odd *s-t* cut capacities 1

LB on *T*-odd *s*-*t* cut capacities LB on nonseparating cut capacities

$$\begin{cases} \sum_{\substack{e \in \delta(\{s\}) \\ e \in \delta(\{v\}) \\ e \in \delta(\{v\}) \\ e \in \delta(S) \\ e \in \delta(S) \\ \sum_{e \in \delta(S)} x_e \ge 1, \\ e \in \delta(S) \\ S = 1, \\ e \in \delta(S) \\ S = 2, \\ e \in \delta(S) \\ 0 \le x_e \le 1 \end{cases} \quad \forall S \subsetneq V, |\{s,t\} \cap S| = 1 \\ \forall S \subsetneq V, |\{s,t\} \cap S| \neq 1, S \neq \emptyset \\ \forall S \subseteq V, |\{s,t\} \cap S| \neq 1, S \neq \emptyset \end{cases}$$

2

y

• Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Take
$$y := \alpha \chi_{\mathscr{T}} + \beta x^*$$
 for $\alpha = \beta = \frac{1}{3}$

 $\chi_{\mathscr{T}}$ x^* yLB on *T*-odd *s-t* cut capacities11LB on nonseparating cut capacities12

• Want: a fractional matching y with $E[c(y)] \leq \frac{2}{2}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Take
$$y := \alpha \chi_{\mathscr{T}} + \beta x^*$$
 for $\alpha = \beta = \frac{1}{3}$

 $\frac{\chi_{\mathscr{T}}}{2} \frac{x^*}{1}$ LB on *T*-odd *s*-*t* cut capacities LB on nonseparating cut capacities 1

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

y

2

• Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution

• Take
$$y := \alpha \chi_{\mathscr{T}} + \beta x^*$$
 for $\alpha = \beta = \frac{1}{3}$

 $\chi_{\mathscr{T}}$ X^* yLB on *T*-odd *s*-*t* cut capacities21 $2\alpha + \beta = 1$ LB on nonseparating cut capacities12 $\alpha + 2\beta = 1$

- Want: a fractional matching y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_{\mathscr{T}} + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

 $\chi_{\mathscr{T}}$ X^* yLB on *T*-odd *s*-*t* cut capacities21 $2\alpha + \beta = 1$ LB on nonseparating cut capacities12 $\alpha + 2\beta = 1$

•
$$\mathsf{E}[c(y)] = \alpha \mathsf{E}[c(\chi_{\mathscr{T}})] + \beta c(x^*) = (\alpha + \beta)c(x^*)$$

•
$$\mathsf{E}[c(H)] \leq \mathsf{E}[c(\mathscr{T})] + \mathsf{E}[c(M)] \leq (1 + \alpha + \beta)c(x^*)$$

Theorem

The given algorithm is a $(1 + \alpha + \beta)$ -approximation algorithm

	$\chi_{\mathscr{T}}$	X *	У
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

• Perturb α and β

• In particular, decrease α by 2ϵ and increase β by ϵ

 $\chi_{\mathscr{T}}$ X^* YLB on T-odd s-t cut capacities21 $2\alpha + \beta$ LB on nonseparating cut capacities12 $\alpha + 2\beta$

- Perturb α and β
 - In particular, decrease α by $\mathbf{2}\epsilon$ and increase β by ϵ
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most $d := O(\epsilon)$

 $\chi_{\mathscr{T}}$ X^* YLB on T-odd s-t cut capacities21 $2\alpha + \beta$ LB on nonseparating cut capacities12 $\alpha + 2\beta$

- Perturb α and β
 - In particular, decrease α by $\mathbf{2}\epsilon$ and increase β by ϵ
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most d := O(e)

Definition

For $0 < \tau \le 1$, a τ -narrow cut (U, \overline{U}) is an s-t cut with $\sum_{e \in \delta(U)} x_e^* < 1 + \tau$

 τ-narrow cuts may be violated when they are T-odd

• τ -narrow cuts may be violated when they are T-odd

Lemma

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

 τ-narrow cuts may be violated when they are T-odd

Lemma

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Proof.

• Expected number of tree edges in the cut is $< 1 + \tau$: $\sum_{e \in \delta(U)} \Pr[e \in \mathscr{T}] = \sum_{e \in \delta(U)} x_e^* < 1 + \tau$

•
$$\Pr[e \in \mathscr{T}] = x_e^*$$

 τ-narrow cuts may be violated when they are T-odd

Lemma

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Proof.

- Expected number of tree edges in the cut is $< 1 + \tau$: $\sum_{e \in \delta(U)} \Pr[e \in \mathscr{T}] = \sum_{e \in \delta(U)} x_e^* < 1 + \tau$
- (U, \overline{U}) has at least one tree edge in it
- If (U, \overline{U}) is odd w.r.t. T, it must have another tree edge in it

•
$$\Pr[e \in \mathscr{T}] = x_e^*$$

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ -narrow cuts were disjoint

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of *τ*-narrow cuts were disjoint

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$$

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
- Suppose edge sets of τ-narrow cuts were disjoint

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \mathbf{r}$$

 For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set r_e := dx^{*}_e

Claim y is a fractional matching

Claim $E[c(r)] \leq d\tau c(x^*)$

τ-narrow cuts are not disjoint

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

Lemma

Each τ -narrow cut has a "representative" edge set of capacity $\geq 1 - \frac{\tau}{2}$, and they are mutually disjoint

The Main Result

Theorem

Best-of-many Christofides' algorithm is a deterministic ϕ -approximation algorithm for the s-t path TSP for the general metric, where $\phi = \frac{1+\sqrt{5}}{2} < 1.6181$ is the golden ratio

Open Questions

- Circuit TSP
 - Is there a better than 3/2-approximation algorithm?
 - Do our techniques extend to the circuit TSP?

Thank you.