Improving Christofides' Algorithm for the s-t Path TSP

Hyung-Chan An

Joint work with Bobby Kleinberg and David Shmoys

Metric TSP

- Metric (circuit) TSP
- Given a weighted graph $G=(V, E)\left(c: E \rightarrow \mathbb{R}_{+}\right)$, find a minimum Hamiltonian circuit
- Triangle inequality holds
- Christofides (1976) gave a 3/2-approximation algorithm

Figure from [Dantzig, Fulkerson, Johnson 1954]

Metric TSP

- Metric (circuit) TSP
- Given a weighted graph $G=(V, E)\left(c: E \rightarrow \mathbb{R}_{+}\right)$, find a minimum Hamiltonian circuit
- Triangle inequality holds
- Christofides (1976) gave a 3/2-approximation algorithm
- No better performance guarantee known

Metric s-t Path TSP

- Metric s-t path TSP
- Given a weighted graph $G=(V, E)\left(c: E \rightarrow \mathbb{R}_{+}\right)$with endpoints $s, t \in V$, find a minimum s - t Hamiltonian path
- Triangle inequality holds
- Hoogeveen (1991) showed that Christofides' algorithm is a $5 / 3$-approximation algorithm and this bound is tight

Figure from [Dantzig, Fulkerson, Johnson 1954]

Our Main Result

Theorem

Christofides' algorithm can be improved to yield a deterministic ϕ-approximation algorithm for the s-t path TSP for an arbitrary metric, where $\phi=\frac{1+\sqrt{5}}{2}$ is the golden ratio $(\phi<1.6181)$

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])
- Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
- Shortest path metric in an underlying unweighted graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])
- Techniques can be successfully applied to both variants
- Our algorithm for the s - t path TSP improves Christofides' for an arbitrary metric
- Can our techniques be extended to the circuit variant?

Can Randomization Beat Christofides?

Can Randomization Beat Christofides?

- Find minimum span. tree $\mathscr{T}_{\text {min }}$
- Augment $\mathscr{T}_{\text {min }}$ into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

Can Randomization Beat Christofides?

- Find minimum span. tree $\mathscr{T}_{\text {min }}$
- Augment $\mathscr{T}_{\text {min }}$ into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Choose random span. tree \mathscr{T}
- Augment \mathscr{T} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
- O (log $n / \log \log n)$-approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2- $\mathbf{~}$)-approx

Can Randomization Beat Christofides?

- Find minimum span. tree $\mathscr{T}_{\text {min }}$
- Augment $\mathscr{T}_{\text {min }}$ into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Choose random span. tree \mathscr{T}
- Augment \mathscr{T} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
- O(log $n / \log \log n)$-approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2- $)$-approx
- Proved for unit-weight graphical metric

Can Randomization Beat Christofides?

- Find minimum span. tree $\mathscr{T}_{\text {min }}$
- Augment $\mathscr{T}_{\text {min }}$ into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Choose random span. tree \mathscr{T}
- Augment \mathscr{T} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
- O(log $n / \log \log n)$-approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2- (2)-approx
- Proved for unit-weight graphical metric
- ϕ-approx for s - t path TSP
- Arbitrary metric
- Simpler random choice

Christofides’ Algorithm

- Christofides' algorithm
0

$$
\begin{array}{llll}
& & 0 \\
0 & & 0 & \\
& 0 & & \\
0 & & 0 &
\end{array}
$$

Christofides' Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$

Christofides’ Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of odd-degree vertices in $\mathscr{T}_{\text {min }}$

Christofides’ Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T

Christofides’ Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T

Christofides’ Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an Eulerian circuit of $\mathscr{T}_{\min } \cup M$

Christofides’ Algorithm

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an Eulerian circuit of $\mathscr{T}_{\min } \cup M$
- Shortcut it into a Hamiltonian circuit H

Christofides' Algorithm, for s-t path TSP

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an s-t Eulerian path of $\mathscr{T}_{\text {min }} \cup M$
- Shortcut it into an s-t Hamiltonian path

Christofides' Algorithm, for s-t path TSP

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree:
i.e., T is the set of even-degree endpoints and other odd-degree vertices in $\mathscr{T}_{\min }$
- Find a minimum perfect matching M on T
- Find an s-t Eulerian path of $\mathscr{T}_{\min } \cup M$
- Shortcut it into an s-t Hamiltonian path

Christofides' Algorithm, for s-t path TSP

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an s-t Eulerian path of $\mathscr{T}_{\text {min }} \cup M$
- Shortcut it into an s-t Hamiltonian path

Christofides' Algorithm, for s-t path TSP

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an s-t Eulerian path of $\mathscr{T}_{\text {min }} \cup M$
- Shortcut it into an s-t Hamiltonian path

Christofides' Algorithm, for s-t path TSP

- Christofides' algorithm
- Find a minimum spanning tree $\mathscr{T}_{\text {min }}$
- Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in $\mathscr{T}_{\text {min }}$
- Find a minimum perfect matching M on T
- Find an s-t Eulerian path of $\mathscr{T}_{\text {min }} \cup M$
- Shortcut it into an s-t Hamiltonian path

Path-variant Christofides’ algorithm

- Path-variant Christofides' algorithm
- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

- Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides’ algorithm

- Path-variant Christofides' algorithm
- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

- Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides’ algorithm

- Path-variant Christofides' algorithm
- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

- Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Held-Karp Relaxation

- Held-Karp relaxation
- $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \bar{S})

- Incidence vector χ_{F} of $F \subset E$ is $\left(\chi_{F}\right)_{e}:= \begin{cases}1 & \text { if } e \in F \\ 0 & \text { otherwise }\end{cases}$

Held-Karp Relaxation

- Held-Karp relaxation

For $G=(V, E)$ and $s, t \in V$,

$$
\begin{array}{ll}
\begin{cases}\sum_{e \in \delta(\{s\})} x_{e}=\sum_{e \in \delta(\{t\})} x_{e}=1 & \\
\sum_{e \in \delta(\{v\})} x_{e}=2, & \forall v \in V \backslash\{s, t\} \\
\sum_{e \in \delta(S)} x_{e} \geq 1, & \forall S \subsetneq V,|\{s, t\} \cap S|=1 \\
\sum_{e \in \delta(S)} x_{e} \geq 2, & \forall S \subsetneq V,|\{s, t\} \cap S| \neq 1, S \neq \emptyset \\
0 \leq x_{e} \leq 1 & \forall e \in E \\
x \in \mathbb{R}^{E}\end{cases}
\end{array}
$$

Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope

Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees

Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]

Our Algorithm

- Best-of-Many Christofides' Algorithm
- Compute an optimal solution x^{*} to the Held-Karp relaxation
- Rewrite x^{*} as a convex comb. of spanning trees $\mathscr{T}_{1}, \ldots, \mathscr{T}_{k}$
- For each \mathscr{T}_{1} :
- Let T_{i} be the set of vertices with "wrong" parity of degree: i.e., T_{i} is the set of even-degree endpoints and other odd-degree vertices in \mathscr{T}_{i}
- Find a minimum perfect matching M_{i} on T_{i}
- Find an s-t Eulerian path of $\mathscr{T}_{i} \cup M_{i}$
- Shortcut it into an s-t Hamiltonian path H_{i}
- Output the best Hamiltonian path

Randomized Algorithm

- Sampling Christofides' Algorithm
- Sample \mathscr{T} by choosing \mathscr{T}_{i} with probability λ_{i} $\left(x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{\mathscr{T}_{i}}\right)$

Randomized Algorithm

- Sampling Christofides' Algorithm
- Sample \mathscr{T} by choosing \mathscr{T}_{i} with probability λ_{i}

$$
\left(x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{\mathscr{T}_{i}}\right)
$$

- $\mathrm{E}[c(H)] \leq \rho \cdot \mathrm{OPT} \Longrightarrow$

Best-of-Many Christofides' Algorithm is ρ-approx. algorithm

Randomized Algorithm

- Sampling Christofides' Algorithm
- Sample \mathscr{T} by choosing \mathscr{T}_{i} with probability λ_{i}

$$
\left(x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{\mathscr{T}_{i}}\right)
$$

- $\mathrm{E}[c(H)] \leq \rho \cdot \mathrm{OPT} \Longrightarrow$

Best-of-Many Christofides' Algorithm is ρ-approx. algorithm

- $\operatorname{Pr}[e \in \mathscr{T}]=x_{e}^{*}$

Randomized Algorithm

- Sampling Christofides' Algorithm
- Sample \mathscr{T} by choosing \mathscr{T}_{i} with probability λ_{i}

$$
\left(x^{*}=\sum_{i=1}^{k} \lambda_{i} \chi_{\mathscr{T}_{i}}\right)
$$

- $\mathrm{E}[c(H)] \leq \rho \cdot \mathrm{OPT} \Longrightarrow$

Best-of-Many Christofides' Algorithm is ρ-approx. algorithm

- $\operatorname{Pr}[e \in \mathscr{T}]=x_{e}^{*}$
- $\mathrm{E}[c(\mathscr{T})]=\sum_{e \in E} c_{e} x_{e}^{*}=c\left(x^{*}\right)$
- The rest of the analysis focuses on bounding $c(M)$

Polyhedral Characterization of Matchings

- Polyhedral characterization of matchings on T (assuming triangle inequality)
[Edmonds, Johnson 1973]

Polyhedral Characterization of Matchings

- Polyhedral characterization of matchings on T (assuming triangle inequality)
[Edmonds, Johnson 1973]

- Call a feasible solution a fractional matching; its cost upper-bounds $c(M)$

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$
(Matching) $\left\{\begin{array}{l}\sum_{e \in \delta(S)} y_{e} \geq 1, \quad \forall S \subset V,|S \cap T| \text { odd } \\ y \in \mathbb{R}_{+}^{E}\end{array}\right.$

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $y:=\alpha \chi_{\mathscr{G}}+\beta x^{*}$ for $\alpha=\beta=\frac{1}{3}$

	$\chi_{\mathscr{F}}$	x^{*}	y
LB on T-odd s - t cut capacities	1		
LB on nonseparating cut capacities	2		

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$

	$\chi_{\mathscr{T}}$	x^{*}	y
LB on T-odd s - t cut capacities	1	1	
LB on nonseparating cut capacities	1	2	

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$

	$\chi_{\mathscr{T}}$	x^{*}	y
LB on T-odd s - t cut capacities	2	1	$2 \alpha+\beta=1$
LB on nonseparating cut capacities	1	2	$\alpha+2 \beta=1$

Proof of 5/3-approximation

- Want: a fractional matching y with $\mathrm{E}[c(y)] \leq \frac{2}{3} c\left(x^{*}\right)$ $x^{*}:=$ optimal Held-Karp solution
- Take $\boldsymbol{y}:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}$ for $\alpha=\beta=\frac{1}{3}$

	$\chi_{\mathscr{T}}$	x^{*}	y
LB on T-odd s - t cut capacities	2	1	$2 \alpha+\beta=1$
LB on nonseparating cut capacities	1	2	$\alpha+2 \beta=1$

- $\mathrm{E}[c(y)]=\alpha \mathrm{E}\left[\boldsymbol{c}\left(\chi_{\mathscr{T}}\right)\right]+\beta \boldsymbol{c}\left(x^{*}\right)=(\alpha+\beta) c\left(x^{*}\right)$
- $\mathrm{E}[c(H)] \leq \mathrm{E}[c(\mathscr{T})]+\mathrm{E}[c(M)] \leq(1+\alpha+\beta) c\left(x^{*}\right)$

Theorem
The given algorithm is a $(1+\alpha+\beta)$-approximation algorithm

Improvement upon 5/3

- Perturb α and β
- In particular, decrease α by 2ϵ and increase β by ϵ

Improvement upon 5/3

	$\chi_{\mathscr{T}}$	x^{*}	y
LB on T-odd s-t cut capacities	2	1	$2 \alpha+\beta$
LB on nonseparating cut capacities	1	2	$\alpha+2 \beta$

- Perturb α and β
- In particular, decrease α by 2ϵ and increase β by ϵ
- $\mathbf{E}[\boldsymbol{c}(y)]=(\alpha+\beta) \boldsymbol{c}\left(x^{*}\right)$ decreases by $\epsilon \boldsymbol{C}\left(x^{*}\right)$
- $\alpha+2 \beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s - t cuts with small capacity may become violated
- If violated, by at most $d:=O(\epsilon)$

Improvement upon 5/3

	$\chi_{\mathscr{T}}$	x^{*}	y
LB on T-odd s - t cut capacities	2	1	$2 \alpha+\beta$
LB on nonseparating cut capacities	1	2	$\alpha+2 \beta$

- Perturb α and β
- In particular, decrease α by 2ϵ and increase β by ϵ
- $\mathbf{E}[\boldsymbol{c}(y)]=(\alpha+\beta) \boldsymbol{c}\left(x^{*}\right)$ decreases by $\epsilon \boldsymbol{C}\left(x^{*}\right)$
- $\alpha+2 \beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s - t cuts with small capacity may become violated
- If violated, by at most $d:=O(\epsilon)$

Definition
For $0<\tau \leq 1$, a τ-narrow cut (U, \bar{U}) is an s-t cut with $\sum_{e \in \delta(U)} x_{e}^{*}<1+\tau$

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Lemma
For any τ-narrow cut $(U, \bar{U}), \operatorname{Pr}[|U \cap T|$ odd $]<\tau$

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Lemma
For any τ-narrow cut $(U, \bar{U}), \operatorname{Pr}[|U \cap T|$ odd $]<\tau$

Proof.

- Expected number of tree edges in the cut is $<1+\tau$:
$\sum_{e \in \delta(U)} \operatorname{Pr}[e \in \mathscr{T}]=\sum_{e \in \delta(U)} x_{e}^{*}<1+\tau$
- $\operatorname{Pr}[e \in \mathscr{T}]=x_{e}^{*}$

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Lemma
For any τ-narrow cut $(U, \bar{U}), \operatorname{Pr}[|U \cap T|$ odd $]<\tau$

Proof.

- Expected number of tree edges in the cut is $<1+\tau$:

$$
\sum_{e \in \delta(U)} \operatorname{Pr}[e \in \mathscr{T}]=\sum_{e \in \delta(U)} x_{e}^{*}<1+\tau
$$

- (U, \bar{U}) has at least one tree edge in it
- If (U, \bar{U}) is odd w.r.t. T, it must have another tree edge in it
- $\operatorname{Pr}[e \in \mathscr{T}]=x_{e}^{*}$

Lemma
An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau=O(\epsilon)$
- When this happens, the cut will have deficiency $d=O(\epsilon)$

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau=O(\epsilon)$
- When this happens, the cut will have deficiency $d=O(\epsilon)$
- Suppose edge sets of τ-narrow cuts were disjoint

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau=O(\epsilon)$
- When this happens, the cut will have deficiency $d=O(\epsilon)$
- Suppose edge sets of τ-narrow cuts were disjoint
- $y:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}+r$

Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau=O(\epsilon)$
- When this happens, the cut will have deficiency $d=O(\epsilon)$
- Suppose edge sets of τ-narrow cuts were disjoint
- $y:=\alpha \chi_{\mathscr{T}}+\beta \boldsymbol{x}^{*}+r$
- For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set $r_{e}:=d x_{e}^{*}$
Claim y is a fractional matching
Claim $\mathrm{E}[c(r)] \leq d \tau c\left(x^{*}\right)$

Improvement upon 5/3

- τ-narrow cuts are not disjoint

Improvement upon 5/3

- τ-narrow cuts are not disjoint, but "almost" disjoint

Lemma
τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$.

Improvement upon 5/3

- τ-narrow cuts are not disjoint, but "almost" disjoint

Lemma

τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ-narrow cuts constitute a layered structure.

Improvement upon 5/3

- τ-narrow cuts are not disjoint, but "almost" disjoint

Lemma
τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ-narrow cuts constitute a layered structure.

Lemma
Each τ-narrow cut has a "representative" edge set of capacity
$\geq 1-\frac{\tau}{2}$, and they are mutually disjoint

The Main Result

Theorem

Best-of-many Christofides' algorithm is a deterministic ϕ-approximation algorithm for the s-t path TSP for the general metric, where $\phi=\frac{1+\sqrt{5}}{2}<1.6181$ is the golden ratio

Open Questions

- Circuit TSP
- Is there a better than $3 / 2$-approximation algorithm?
- Do our techniques extend to the circuit TSP?

Thank you.

