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Metric TSP

Figure from [Dantzig, Fulkerson, Johnson 1954]

Metric (circuit) TSP
Given a weighted graph G = (V ,E) (c : E → R+),
find a minimum Hamiltonian circuit

Triangle inequality holds

Christofides (1976) gave a 3/2-approximation algorithm
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Metric (circuit) TSP
Given a weighted graph G = (V ,E) (c : E → R+),
find a minimum Hamiltonian circuit

Triangle inequality holds

Christofides (1976) gave a 3/2-approximation algorithm
No better performance guarantee known
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Metric s-t Path TSP

Figure from [Dantzig, Fulkerson, Johnson 1954]

Metric s-t path TSP
Given a weighted graph G = (V ,E) (c : E → R+) with
endpoints s, t ∈ V , find a minimum s-t Hamiltonian path

Triangle inequality holds

Hoogeveen (1991) showed that Christofides’ algorithm is a
5/3-approximation algorithm and this bound is tight
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Our Main Result

Theorem
Christofides’ algorithm can be improved to yield a deterministic
φ-approximation algorithm for the s-t path TSP for an arbitrary
metric, where φ = 1+

√
5

2 is the golden ratio (φ < 1.6181)
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Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP
Shortest path metric in an underlying unweighted graph
Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mömke, Svensson 2011], [Mucha 2011],
[Sebő, Vygen 2012])

Techniques can be successfully applied to both variants

Our algorithm for the s-t path TSP improves Christofides’
for an arbitrary metric

Can our techniques be extended to the circuit variant?
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Can Randomization Beat Christofides?
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Can Randomization Beat Christofides?
• Find minimum span. tree Tmin

• Augment Tmin into a low-cost
Eulerian circuit/path
• Transform it into a Hamiltonian
circuit/path of no greater cost

• Choose random span. tree T

• Augment T into a low-cost
Eulerian circuit/path

• Transform it into a Hamiltonian
circuit/path of no greater cost

Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
- O(logn/ log logn)-approx for ATSP
Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2− ε)-approx
- Proved for unit-weight graphical metric
φ-approx for s-t path TSP
- Arbitrary metric
- Simpler random choice
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Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T
Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin

Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T
Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin

Find a minimum perfect matching M on T
Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T

Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T

Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T
Find an Eulerian circuit of Tmin ∪M

Shortcut it into a Hamiltonian circuit H

1

10 5

2 3

4

6

78

9

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum perfect matching M on T
Find an Eulerian circuit of Tmin ∪M
Shortcut it into a Hamiltonian circuit H

9 5

1

2 3

4

6

7

8

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Christofides’ Algorithm, for s-t path TSP
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in Tmin
Find a minimum perfect matching M on T
Find an s-t Eulerian path of Tmin ∪M
Shortcut it into an s-t Hamiltonian path

st
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Path-variant Christofides’ algorithm

Path-variant Christofides’ algorithm
5/3-approximation algorithm [Hoogeveen 1991]
This bound is tight

s t

…

Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Held-Karp Relaxation
Held-Karp relaxation

δ(S) for S ( V denotes the set of edges in cut (S, S̄)

s
t

S

Incidence vector χF of F ⊂ E is (χF )e :=

{
1 if e ∈ F
0 otherwise
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Held-Karp Relaxation
Held-Karp relaxation
For G = (V ,E) and s, t ∈ V ,

s
t

S

s
t

S



∑
e∈δ({s})

xe =
∑

e∈δ({t})

xe = 1∑
e∈δ({v})

xe = 2, ∀v ∈ V \ {s, t}∑
e∈δ(S)

xe ≥ 1, ∀S ( V , |{s, t} ∩ S| = 1∑
e∈δ(S)

xe ≥ 2, ∀S ( V , |{s, t} ∩ S| 6= 1,S 6= ∅

0 ≤ xe ≤ 1 ∀e ∈ E

x ∈ RE
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Held-Karp Relaxation

Polynomial-time solvable
Feasible region of this LP is contained in the ST polytope

Held-Karp solution can be written as a convex combination
of (incidence vectors of) spanning trees
Can find such a decomposition in polynomial time
[Grötschel, Lovász, Schrijver 1981]
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Our Algorithm

Best-of-Many Christofides’ Algorithm
Compute an optimal solution x∗ to the Held-Karp relaxation
Rewrite x∗ as a convex comb. of spanning trees T1, . . . ,Tk
For each Ti :

Let Ti be the set of vertices with “wrong” parity of degree:
i.e., Ti is the set of even-degree endpoints and other
odd-degree vertices in Ti
Find a minimum perfect matching Mi on Ti
Find an s-t Eulerian path of Ti ∪Mi
Shortcut it into an s-t Hamiltonian path Hi

Output the best Hamiltonian path
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Randomized Algorithm
Sampling Christofides’ Algorithm

Sample T by choosing Ti with probability λi
(x∗ =

∑k
i=1 λiχTi )

E[c(H)] ≤ ρ ·OPT =⇒
Best-of-Many Christofides’ Algorithm is ρ-approx. algorithm
Pr[e ∈ T ] = x∗e

E[c(T )] =
∑

e∈E cex∗e = c(x∗)
The rest of the analysis focuses on bounding c(M)
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Polyhedral Characterization of Matchings

Polyhedral characterization of matchings on T
(assuming triangle inequality) [Edmonds, Johnson 1973]

S


∑

e∈δ(S)
ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
+

Call a feasible solution a fractional matching;
its cost upper-bounds c(M)
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Proof of 5/3-approximation
Want: a fractional matching y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal Held-Karp solution

Take y := αχT + βx∗ for α = β = 1
3

χT x∗

y

LB on T -odd s-t cut capacities

1 1 2α + β= 1

LB on nonseparating cut capacities

2 α + 2β= 1
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∑

e∈δ(S)
ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
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Proof of 5/3-approximation
Want: a fractional matching y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal Held-Karp solution
Take y := αχT + βx∗ for α = β = 1

3

χT x∗ y
LB on T -odd s-t cut capacities 2 1

2α + β= 1
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α + 2β= 1

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two tree edges in it

s

t

U
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Proof of 5/3-approximation
Want: a fractional matching y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal Held-Karp solution
Take y := αχT + βx∗ for α = β = 1

3

χT x∗ y
LB on T -odd s-t cut capacities 2 1 2α + β= 1

LB on nonseparating cut capacities 1 2 α + 2β= 1

E[c(y)] = αE[c(χT )] + βc(x∗) = (α + β)c(x∗)
E[c(H)] ≤ E[c(T )] + E[c(M)] ≤ (1 + α + β)c(x∗)

Theorem
The given algorithm is a (1 + α + β)-approximation algorithm
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Improvement upon 5/3
χT x∗ y

LB on T -odd s-t cut capacities 2 1 2α + β
LB on nonseparating cut capacities 1 2 α + 2β

Perturb α and β
In particular, decrease α by 2ε and increase β by ε

E[c(y)] = (α + β)c(x∗) decreases by εc(x∗)
α + 2β unchanged; nonseparating cuts remain satisfied
may become violated

If violated, by at most d := O(ε)

Definition
For 0 < τ ≤ 1, a τ -narrow cut (U, Ū) is an s-t cut

s
t

U

with
∑

e∈δ(U) x∗e < 1 + τ
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Improvement upon 5/3
τ -narrow cuts may be violated when they are T -odd

Lemma
For any τ -narrow cut (U, Ū), Pr[|U ∩ T | odd] < τ

Proof.

Expected number of tree edges in the cut is < 1 + τ :∑
e∈δ(U) Pr[e ∈ T ] =

∑
e∈δ(U) x∗e < 1 + τ

(U, Ū) has at least one tree edge in it
If (U, Ū) is odd w.r.t. T , it must have another tree edge in it

Pr[e ∈ T ] = x∗e

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two tree edges in it
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Proof.
Expected number of tree edges in the cut is < 1 + τ :∑

e∈δ(U) Pr[e ∈ T ] =
∑

e∈δ(U) x∗e < 1 + τ

(U, Ū) has at least one tree edge in it
If (U, Ū) is odd w.r.t. T , it must have another tree edge in it

Pr[e ∈ T ] = x∗e

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two tree edges in it
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Improvement upon 5/3
τ -narrow cuts may be violated when they are T -odd
This happens with probability smaller than τ = O(ε)

When this happens, the cut will have deficiency d = O(ε)

Suppose edge sets of τ -narrow cuts were disjoint
y := αχT + βx∗ + r
For each e, if e is in a τ -narrow cut that is odd w.r.t. T ,
set re := dx∗e

Claim y is a fractional matching
Claim E[c(r)] ≤ dτc(x∗)
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Improvement upon 5/3
τ -narrow cuts are not disjoint

, but “almost” disjoint

Lemma
τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, Ū) and
(W , W̄ ) with s ∈ U,W, either U ⊂W or W ⊂ U.

Therefore,
τ -narrow cuts constitute a layered structure.
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Improvement upon 5/3
τ -narrow cuts are not disjoint, but “almost” disjoint

Lemma
τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, Ū) and
(W , W̄ ) with s ∈ U,W, either U ⊂W or W ⊂ U. Therefore,
τ -narrow cuts constitute a layered structure.

Lemma
Each τ -narrow cut has a “representative” edge set of capacity
≥ 1− τ

2 , and they are mutually disjoint
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The Main Result

Theorem
Best-of-many Christofides’ algorithm is a deterministic
φ-approximation algorithm for the s-t path TSP for the general
metric, where φ = 1+

√
5

2 < 1.6181 is the golden ratio
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Open Questions

Circuit TSP
Is there a better than 3/2-approximation algorithm?
Do our techniques extend to the circuit TSP?
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Thank you.


