Improving Christofides’ Algorithm for the s-t Path TSP

Hyung-Chan An

Joint work with Bobby Kleinberg and David Shmoys
Metric TSP

- **Metric (circuit) TSP**
 - Given a weighted graph $G = (V, E)$ ($c : E \rightarrow \mathbb{R}_+$), find a minimum Hamiltonian circuit
 - Triangle inequality holds
 - Christofides (1976) gave a $3/2$-approximation algorithm

Figure from [Dantzig, Fulkerson, Johnson 1954]
Metric TSP

- **Metric (circuit) TSP**
 - Given a weighted graph $G = (V, E) (c : E \rightarrow \mathbb{R}_+)$, find a minimum Hamiltonian circuit
 - Triangle inequality holds
 - Christofides (1976) gave a 3/2-approximation algorithm
 - No better performance guarantee known

Figure from [Dantzig, Fulkerson, Johnson 1954]
Metric s-t Path TSP

- Metric *s-t path* TSP
 - Given a weighted graph $G = (V, E)$ ($c : E \rightarrow \mathbb{R}_+$) with endpoints $s, t \in V$, find a minimum s-t Hamiltonian *path*
 - Triangle inequality holds
 - Hoogeveen (1991) showed that Christofides’ algorithm is a $5/3$-approximation algorithm and this bound is tight

Figure from [Dantzig, Fulkerson, Johnson 1954]
Our Main Result

Theorem

Christofides’ algorithm can be improved to yield a deterministic \(\phi \)-approximation algorithm for the s-t path TSP for an arbitrary metric, where \(\phi = \frac{1+\sqrt{5}}{2} \) is the golden ratio (\(\phi < 1.6181 \)).
Recent Exciting Improvements

- Recent improvements for **unit-weight graphical metric TSP**
 - Shortest path metric in an underlying unweighted graph
 - Better approximation than Christofides’
 ([Oveis Gharan, Saberi, Singh 2011],
 [Mömke, Svensson 2011], [Mucha 2011],
 [Sebő, Vygen 2012])
Recent Exciting Improvements

- Recent improvements for **unit-weight graphical metric TSP**
 - Shortest path metric in an underlying unweighted graph
 - Better approximation than Christofides’ ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])

- Our algorithm for the s-t path TSP improves Christofides’ for an *arbitrary* metric
Recent Exciting Improvements

- Recent improvements for *unit-weight graphical metric* TSP
 - Shortest path metric in an underlying unweighted graph
 - Better approximation than Christofides’ ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011], [Sebő, Vygen 2012])
 - Techniques can be successfully applied to both variants

- Our algorithm for the *s-t path* TSP improves Christofides’ for an *arbitrary* metric
 - Can our techniques be extended to the circuit variant?
Can Randomization Beat Christofides?
Can Randomization Beat Christofides?

- Find minimum span. tree T_{min}
- Augment T_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
Can Randomization Beat Christofides?

- Find minimum span. tree T_{min}
- Augment T_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Choose random span. tree \mathcal{I}
- Augment \mathcal{I} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$-approx for ATSP

- Oveis Gharan, Saberi, Singh 2011
 - Conjectured $(3/2 - \epsilon)$-approx
Can Randomization Beat Christofides?

- Find minimum span. tree \mathcal{T}_{min}
- Augment \mathcal{T}_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Choose random span. tree \mathcal{I}
- Augment \mathcal{I} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$-approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
 - Conjectured $(3/2 - \epsilon)$-approx
 - Proved for unit-weight graphical metric
Can Randomization Beat Christofides?

- Find minimum span. tree T_{min}
- Augment T_{min} into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost
- Choose random span. tree T
- Augment T into a low-cost Eulerian circuit/path
- Transform it into a Hamiltonian circuit/path of no greater cost

- Asadpour, Goemans, Mądry, Oveis Gharan, Saberi 2010:
 - $O(\log n / \log \log n)$-approx for ATSP
- Oveis Gharan, Saberi, Singh 2011
 - Conjectured $(3/2 - \epsilon)$-approx
 - Proved for unit-weight graphical metric
- ϕ-approx for s-t path TSP
 - Arbitrary metric
 - Simpler random choice
Christofides’ Algorithm

Christofides’ algorithm

Find a minimum spanning tree T_{min}

Let T be the set of vertices with “wrong” parity of degree:

i.e., T is the set of odd-degree vertices in T_{min}

Find a minimum perfect matching M on T

Find an Eulerian circuit of $T_{\text{min}} \cup M$

Shortcut it into a Hamiltonian circuit H
Christofides’ Algorithm

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}

Hyung-Chan An
Improving Christofides’ Algorithm for the s-t Path TSP
Christofides’ Algorithm

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of odd-degree vertices in T_{min}
Christofides’ Algorithm

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
Christofides’ Algorithm

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
Christofides’ Algorithm

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
 - Find an Eulerian circuit of $T_{\text{min}} \cup M$
Christofides’ Algorithm

Christofides’ algorithm

- Find a minimum spanning tree T_{min}
- Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of odd-degree vertices in T_{min}
- Find a minimum perfect matching M on T
- Find an Eulerian circuit of $T_{\text{min}} \cup M$
- Shortcut it into a Hamiltonian circuit H
Christofides’ Algorithm, for s-t path TSP

- Christofides’ algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in \mathcal{T}_{min}
 - Find a minimum perfect matching M on T
 - Find an s-t Eulerian path of $\mathcal{T}_{\text{min}} \cup M$
 - Shortcut it into an s-t Hamiltonian path
Hyung-Chan An

Improving Christofides’ Algorithm for the s-t Path TSP

Christofides’ Algorithm, for s-t path TSP

- Christofides’ algorithm
 - Find a minimum spanning tree \(T_{\text{min}} \)
 - Let \(T \) be the set of vertices with “wrong” parity of degree: i.e., \(T \) is the set of even-degree endpoints and other odd-degree vertices in \(T_{\text{min}} \)
 - Find a minimum perfect matching \(M \) on \(T \)
 - Find an s-t Eulerian path of \(T_{\text{min}} \cup M \)
 - Shortcut it into an s-t Hamiltonian path
Christofides’ Algorithm, for s-t path TSP

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
 - Find an s-t Eulerian path of $T_{\text{min}} \cup M$
 - Shortcut it into an s-t Hamiltonian path
Christofides’ Algorithm, for s-t path TSP

- **Christofides’ algorithm**
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
 - Find an s-t Eulerian path of $T_{\text{min}} \cup M$
 - Shortcut it into an s-t Hamiltonian path

Hyung-Chan An
Improving Christofides’ Algorithm for the s-t Path TSP
Christofides’ Algorithm, for s-t path TSP

- Christofides’ algorithm
 - Find a minimum spanning tree T_{min}
 - Let T be the set of vertices with “wrong” parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum perfect matching M on T
 - Find an s-t Eulerian path of $T_{\text{min}} \cup M$
 - Shortcut it into an s-t Hamiltonian path

![Graph Image]
Path-variant Christofides’ algorithm

- Path-variant Christofides’ algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

Unit-weight graphical metric:
- distance between two vertices defined as shortest distance on this underlying unit-weight graph
Path-variant Christofides’ algorithm

- Path-variant Christofides’ algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

- Unit-weight graphical metric:
 distance between two vertices defined as shortest distance
 on this underlying unit-weight graph
Path-variant Christofides’ algorithm

- Path-variant Christofides’ algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

- Unit-weight graphical metric:
 distance between two vertices defined as shortest distance
 on this underlying unit-weight graph
Held-Karp Relaxation

- Held-Karp relaxation
 - \(\delta(S) \) for \(S \subseteq V \) denotes the set of edges in cut \((S, \bar{S}) \)

Incidence vector \(\chi_F \) of \(F \subseteq E \) is \((\chi_F)_e := \begin{cases} 1 & \text{if } e \in F \\ 0 & \text{otherwise} \end{cases} \)
Held-Karp Relaxation

- Held-Karp relaxation
 For $G = (V, E)$ and $s, t \in V$,

 \[
 \begin{align*}
 \sum_{e \in \delta(S)} x_e &= 1, \\
 \sum_{v \in V \setminus \{s, t\}} \sum_{e \in \delta(v)} x_e &= 1, \\
 \sum_{e \in \delta(S)} x_e &\geq 2, \\
 \sum_{e \in \delta(S)} x_e &\geq 2, \\
 0 &\leq x_e \leq 1, \\
 x &\in \mathbb{R}^E
 \end{align*}
 \]

 $x \in \mathbb{R}^E$
Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope

\[\text{[Grötschel, Lovász, Schrijver 1981]} \]
Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
Held-Karp Relaxation

- Polynomial-time solvable
- Feasible region of this LP is contained in the ST polytope
- Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]
Our Algorithm

- **Best-of-Many Christofides’ Algorithm**
 - *Compute an optimal solution* x^\ast *to the Held-Karp relaxation*
 - *Rewrite* x^\ast *as a convex comb. of spanning trees* T_1, \ldots, T_k
 - For each T_i:
 - Let T_i be the set of vertices with “wrong” parity of degree: i.e., T_i is the set of even-degree endpoints and other odd-degree vertices in T_i
 - Find a minimum perfect matching M_i on T_i
 - Find an s-t Eulerian path of $T_i \cup M_i$
 - Shortcut it into an s-t Hamiltonian path H_i
 - Output the best Hamiltonian path
Randomized Algorithm

- Sampling Christofides’ Algorithm
 - Sample \mathcal{T} by choosing \mathcal{T}_i with probability λ_i

 \[\chi^* = \sum_{i=1}^{k} \lambda_i \chi_{\mathcal{T}_i} \]
Randomized Algorithm

- Sampling Christofides’ Algorithm
 - Sample \mathcal{T} by choosing \mathcal{T}_i with probability λ_i

 \[\lambda^* = \sum_{i=1}^{k} \lambda_i \chi_{\mathcal{T}_i} \]

- $\mathbb{E}[c(H)] \leq \rho \cdot \text{OPT} \implies$ Best-of-Many Christofides’ Algorithm is ρ-approx. algorithm
Randomized Algorithm

- **Sampling Christofides’ Algorithm**
 - Sample \mathcal{T} by choosing \mathcal{T}_i with probability λ_i
 \[x^* = \sum_{i=1}^{k} \lambda_i x_{\mathcal{T}_i}\]

- $E[c(H)] \leq \rho \cdot \text{OPT} \implies$ Best-of-Many Christofides’ Algorithm is ρ-approx. algorithm

- $\Pr[e \in \mathcal{T}] = x_e^*$
Randomized Algorithm

- **Sampling Christofides’ Algorithm**
 - Sample \mathcal{T} by choosing \mathcal{T}_i with probability λ_i

 \[x^* = \sum_{i=1}^{k} \lambda_i \chi_{\mathcal{T}_i} \]

- $\mathbb{E}[c(H)] \leq \rho \cdot \text{OPT} \implies$
 - Best-of-Many Christofides’ Algorithm is ρ-approx. algorithm

- $\Pr[e \in \mathcal{T}] = x^*_e$
 - $\mathbb{E}[c(\mathcal{T})] = \sum_{e \in E} c_e x^*_e = c(x^*)$
 - The rest of the analysis focuses on bounding $c(M)$
Polyhedral Characterization of Matchings

- Polyhedral characterization of matchings on T
 (assuming triangle inequality) [Edmonds, Johnson 1973]

\[
\begin{align*}
\sum_{e \in \delta(S)} y_e &\geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\
y &\in \mathbb{R}^E_+
\end{align*}
\]
Polyhedral Characterization of Matchings

Polyhedral characterization of matchings on T (assuming triangle inequality) [Edmonds, Johnson 1973]

\[
\begin{align*}
\sum_{e \in \delta(S)} y_e & \geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\
y & \in \mathbb{R}_+^E
\end{align*}
\]

Call a feasible solution a *fractional matching*; its cost upper-bounds $c(M)$
Proof of $5/3$-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3} c(x^*)$
- $x^* :=$ optimal Held-Karp solution
Proof of 5/3-approximation

• Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3} c(x^*)$
 $x^* :=$ optimal Held-Karp solution

• Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$
Proof of $5/3$-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3} c(x^*)$
 - x^* := optimal Held-Karp solution
- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

\[
\begin{align*}
(Matching) \quad & \left\{ \begin{array}{c}
\sum_{e \in \delta(S)} y_e \geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\
y \in \mathbb{R}^E_+
\end{array} \right.
\end{align*}
\]
Proof of 5/3-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3} c(x^*)$
 $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Held-Karp)

\[
\begin{align*}
\sum_{e \in \delta \{s\}} x_e &= 1, \\
\sum_{e \in \delta \{t\}} x_e &= 1, \\
\sum_{e \in \delta \{v\}} x_e &= 2, \quad \forall v \in V \setminus \{s, t\}, \\
\sum_{e \in \delta(S)} x_e &\geq 1, \quad \forall S \subsetneq V, |\{s, t\} \cap S| = 1, \\
\sum_{e \in \delta(S)} x_e &\geq 2, \quad \forall S \subsetneq V, |\{s, t\} \cap S| \neq 1, S \neq \emptyset, \\
0 &\leq x_e \leq 1, \quad \forall e \in E
\end{align*}
\]
Proof of $5/3$-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3}c(x^*)$

 $x^* :=$ optimal Held-Karp solution

- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Proof of 5/3-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3} c(x^*)$
 $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it
Proof of $5/3$-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3}c(x^*)$
 - $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td>$2\alpha + \beta = 1$</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td>$\alpha + 2\beta = 1$</td>
</tr>
</tbody>
</table>
Proof of 5/3-approximation

- Want: a fractional matching y with $E[c(y)] \leq \frac{2}{3}c(x^*)$
 $x^* :=$ optimal Held-Karp solution
- Take $y := \alpha \chi_T + \beta x^*$ for $\alpha = \beta = \frac{1}{3}$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td>$2\alpha + \beta = 1$</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td>$\alpha + 2\beta = 1$</td>
</tr>
</tbody>
</table>

- $E[c(y)] = \alpha E[c(\chi_T)] + \beta c(x^*) = (\alpha + \beta)c(x^*)$
- $E[c(H)] \leq E[c(T)] + E[c(M)] \leq (1 + \alpha + \beta)c(x^*)$

Theorem

The given algorithm is a $(1 + \alpha + \beta)$-approximation algorithm
Improvement upon 5/3

<table>
<thead>
<tr>
<th></th>
<th>$\chi_\mathcal{T}$</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td>$2\alpha + \beta$</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td>$\alpha + 2\beta$</td>
</tr>
</tbody>
</table>

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ
Improvement upon $5/3$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td>$2\alpha + \beta$</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td>$\alpha + 2\beta$</td>
</tr>
</tbody>
</table>

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ

- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most $d := O(\epsilon)$
Improvement upon $5/3$

<table>
<thead>
<tr>
<th></th>
<th>χ_T</th>
<th>x^*</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>LB on T-odd s-t cut capacities</td>
<td>2</td>
<td>1</td>
<td>$2\alpha + \beta$</td>
</tr>
<tr>
<td>LB on nonseparating cut capacities</td>
<td>1</td>
<td>2</td>
<td>$\alpha + 2\beta$</td>
</tr>
</tbody>
</table>

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ

- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; nonseparating cuts remain satisfied
- T-odd s-t cuts with small capacity may become violated
 - If violated, by at most $d := O(\epsilon)$

Definition

For $0 < \tau \leq 1$, a τ-narrow cut (U, \bar{U}) is an s-t cut with $\sum_{e \in \delta(U)} x^*_e < 1 + \tau$
Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Lemma

For any τ-narrow cut (U, \bar{U}),

$$\Pr[|U \cap T| \text{ odd}] < \tau$$

Proof.

Expected number of tree edges in the cut is

$$\sum_{e \in \delta(U)} \Pr[e \in T] = \sum_{e \in \delta(U)} x^* e < 1 + \tau \quad (U, \bar{U}) \text{ has at least one tree edge in it}$$

If (U, \bar{U}) is odd w.r.t. T, it must have another tree edge in it

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two tree edges in it
Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd

Lemma

For any τ-narrow cut (U, \bar{U}), $\Pr[|U \cap T| \text{ odd}] < \tau$
Improvement upon $5/3$

- τ-narrow cuts may be violated when they are T-odd

Lemma

For any τ-narrow cut (U, \bar{U}), Pr[|$U \cap T$| odd] < τ

Proof.

- Expected number of tree edges in the cut is < $1 + \tau$:

\[
\sum_{e \in \delta(U)} \Pr[e \in \mathcal{T}] = \sum_{e \in \delta(U)} x_e^* < 1 + \tau
\]

- $\Pr[e \in \mathcal{T}] = x_e^*$
Improvement upon 5/3

- \(\tau\)-narrow cuts may be violated when they are \(T\)-odd

Lemma

For any \(\tau\)-narrow cut \((U, \bar{U})\), \(\Pr[|U \cap T| \text{ odd}] < \tau\)

Proof.

- Expected number of tree edges in the cut is \(< 1 + \tau\):
 \[
 \sum_{e \in \delta(U)} \Pr[e \in \mathcal{T}] = \sum_{e \in \delta(U)} x_e^* < 1 + \tau
 \]
- \((U, \bar{U})\) has at least one tree edge in it
- If \((U, \bar{U})\) is odd w.r.t. \(T\), it must have another tree edge in it

- \(\Pr[e \in \mathcal{T}] = x_e^*\)

Lemma

An s-t cut \((U, \bar{U})\) that is odd w.r.t. \(T\) (i.e., \(|U \cap T|\) is odd) has at least two tree edges in it
Improvement upon $5/3$

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$
Improvement upon $5/3$

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$

Suppose edge sets of τ-narrow cuts were disjoint
Improvement upon $5/3$

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$

- Suppose edge sets of τ-narrow cuts were disjoint

$$y := \alpha \chi_T + \beta x^* + r$$
Improvement upon 5/3

- τ-narrow cuts may be violated when they are T-odd
- This happens with probability smaller than $\tau = O(\epsilon)$
- When this happens, the cut will have deficiency $d = O(\epsilon)$

Suppose edge sets of τ-narrow cuts were disjoint

$$y := \alpha \chi_T + \beta x^* + r$$

For each e, if e is in a τ-narrow cut that is odd w.r.t. T, set $r_e := dx_e^*$

Claim y is a fractional matching

Claim $E[c(r)] \leq d\tau c(x^*)$
Improvement upon $5/3$

- τ-narrow cuts are not disjoint
Improvement upon 5/3

- τ-narrow cuts are not disjoint, but “almost” disjoint

Lemma

τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$.

![Diagram showing disjoint and non-disjoint sets](image)
Improvement upon 5/3

- τ-narrow cuts are not disjoint, but “almost” disjoint

Lemma

τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ-narrow cuts constitute a layered structure.
Improvement upon $5/3$

- τ-narrow cuts are not disjoint, but “almost” disjoint

Lemma

τ-narrow cuts do not cross: i.e., for τ-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ-narrow cuts constitute a layered structure.

Lemma

Each τ-narrow cut has a “representative” edge set of capacity $\geq 1 - \frac{\tau}{2}$, and they are mutually disjoint
The Main Result

Theorem

Best-of-many Christofides’ algorithm is a deterministic ϕ-approximation algorithm for the s-t path TSP for the general metric, where $\phi = \frac{1+\sqrt{5}}{2} < 1.6181$ is the golden ratio.
Circuit TSP
- Is there a better than 3/2-approximation algorithm?
- Do our techniques extend to the circuit TSP?
Thank you.