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Metric TSP

@ Metric (circuit) TSP

e Given a weighted graph G = (V,E) (c: E — Ry),
find @ minimum Hamiltonian circuit

e Triangle inequality holds

e Christofides (1976) gave a 3/2-approximation algorithm

Rr—- Figure from [Dantzig, Fulkerson, Johnson 1954]
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Metric TSP

@ Metric (circuit) TSP

e Given a weighted graph G = (V,E) (c: E — Ry),
find @ minimum Hamiltonian circuit

e Triangle inequality holds

e Christofides (1976) gave a 3/2-approximation algorithm

@ No better performance guarantee known

Rr—- Figure from [Dantzig, Fulkerson, Johnson 1954]
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Metric s-t Path TSP

@ Metric s-t path TSP

e Given a weighted graph G = (V,E) (c : E — R ) with
endpoints s,t € V, find a minimum s-t Hamiltonian path

e Triangle inequality holds

e Hoogeveen (1991) showed that Christofides’ algorithm is a
5/3-approximation algorithm and this bound is tight

Rr—- Figure from [Dantzig, Fulkerson, Johnson 1954]
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Our Main Result

Theorem
Christofides’ algorithm can be improved to yield a deterministic
¢-approximation algorithm for the s-t path TSP for an arbitrary

metric, where ¢ = 15 is the golden ratio (¢ < 1.6181)
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Recent Exciting Improvements

@ Recent improvements for unit-weight graphical metric TSP
e Shortest path metric in an underlying unweighted graph
e Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011],
[Sebd, Vygen 2012])
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Recent Exciting Improvements

@ Recent improvements for unit-weight graphical metric TSP

e Shortest path metric in an underlying unweighted graph
e Better approximation than Christofides’

([Oveis Gharan, Saberi, Singh 2011],

[Mémke, Svensson 2011], [Mucha 2011],

[Sebd, Vygen 2012])

e Techniques can be successfully applied to both variants

@ Our algorithm for the s-t path TSP improves Christofides’
for an arbitrary metric

e Can our techniques be extended to the circuit variant?
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Can Randomization Beat Christofides?
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Can Randomization Beat Christofides?

e Find minimum span. tree Jnin

e Augment I, into a low-cost
Eulerian circuit/path

e Transform it into a Hamiltonian
circuit/path of no greater cost
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Can Randomization Beat Christofides?

e Find minimum span. tree i, e Choose random span. tree .7
e Augment I, into a low-cost e Augment .7 into a low-cost

Eulerian circuit/path Eulerian circuit/path
e Transform it into a Hamiltonian e Transform it into a Hamiltonian
circuit/path of no greater cost circuit/path of no greater cost

@ Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010:
- O(log n/ log log n)-approx for ATSP

@ Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2 — ¢)-approx
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Can Randomization Beat Christofides?

e Find minimum span. tree i, e Choose random span. tree .7
e Augment I, into a low-cost e Augment .7 into a low-cost

Eulerian circuit/path Eulerian circuit/path
e Transform it into a Hamiltonian e Transform it into a Hamiltonian
circuit/path of no greater cost circuit/path of no greater cost

@ Asadpour, Goemans, Madry, Oveis Gharan, Saberi 2010:
- O(logn/ loglog n)-approx for ATSP
@ Oveis Gharan, Saberi, Singh 2011
- Conjectured (3/2 — ¢)-approx
- Proved for unit-weight graphical metric
@ ¢-approx for s-t path TSP
- Arbitrary metric
- Simpler random choice
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Christofides’ Algorithm

@ Christofides’ algorithm
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@ Christofides’ algorithm
e Find a minimum spanning tree Jn
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Christofides’ Algorithm

@ Christofides’ algorithm

e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum perfect matching M on

O---------——-0
o---------—-0
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum perfect matching M on
e Find an Eulerian circuit of J, UM
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum perfect matching M on
e Find an Eulerian circuit of Zmin UM
e Shortcut it into a Hamiltonian circuit H
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Christofides’ Algorithm, for s-t path TSP

@ Christofides’ algorithm

e Find a minimum spanning tree Jin

o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in Jin

e Find a minimum perfect matching M on

e Find an s-t Eulerian path of Zpin UM

e Shortcut it into an s-t Hamiltonian path
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@ Christofides’ algorithm

e Find a minimum spanning tree Jin
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Path-variant Christofides’ algorithm

@ Path-variant Christofides’ algorithm

e 5/3-approximation algorithm [Hoogeveen 1991]
e This bound is tight

e Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Path-variant Christofides’ algorithm

@ Path-variant Christofides’ algorithm

e 5/3-approximation algorithm [Hoogeveen 1991]
e This bound is tight

e Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Held-Karp Relaxation

@ Held-Karp relaxation
e §(S) for S C V denotes the set of edges in cut (S, S)

S

1 ifeeF
Incidence vector of FCEis =
° XF (xF)e {O otherwise
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Held-Karp Relaxation

@ Held-Karp relaxation
ForG=(V,E)ands,teV,

Z Xe = Z Xe =1
ecs({s}) ecs({t})
Xe = 2, Yv e V\ {s,t}

ecs({v})

erz1 vSc V,|[{s,t}nS| =1
ecé(S

erzz VSCV,[{s,t}NS|#1,S#0
ecd(S
nge§1 Vec E

x € RE S

S
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Held-Karp Relaxation

@ Polynomial-time solvable
@ Feasible region of this LP is contained in the ST polytope
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@ Held-Karp solution can be written as a convex combination
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Held-Karp Relaxation

@ Polynomial-time solvable
@ Feasible region of this LP is contained in the ST polytope

@ Held-Karp solution can be written as a convex combination
of (incidence vectors of) spanning trees

@ Can find such a decomposition in polynomial time
[Grétschel, Lovasz, Schrijver 1981]
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Our Algorithm

@ Best-of-Many Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation
e Rewrite x* as a convex comb. of spanning trees 7, . ..,
e Foreach 7
@ Let T; be the set of vertices with “wrong” parity of degree:
i.e., T; is the set of even-degree endpoints and other
odd-degree vertices in .7}
@ Find a minimum perfect matching M; on T;
@ Find an s-t Eulerian path of .7 U M;
@ Shortcut it into an s-t Hamiltonian path H;

Output the best Hamiltonian path
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Randomized Algorithm

@ Sampling Christofides’ Algorithm
e Sample .7 by choosing .; with probability );
(0 = S Ax )
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Randomized Algorithm

@ Sampling Christofides’ Algorithm
e Sample .7 by choosing .; with probability );
(0 = S Ax )

@ E[c(H)] <p-OPT =
Best-of-Many Christofides’ Algorithm is p-approx. algorithm

@ Prleec 7] =x;
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Randomized Algorithm

@ Sampling Christofides’ Algorithm
e Sample .7 by choosing .; with probability );
(" = Yy Axn)
@ E[c(H)] <p-OPT =
Best-of-Many Christofides’ Algorithm is p-approx. algorithm
@ Prleec 7] =x;

° E[e(T)] = D ece Coxe = c(x7)
e The rest of the analysis focuses on bounding c(M)
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Polyhedral Characterization of Matchings

@ Polyhedral characterization of matchings on T
(assuming triangle inequality) [Edmonds, Johnson 1973]

g © > Yex1, ¥ScV,|SNT|odd
.O/. \O ecs(S)

E
y e RY
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Polyhedral Characterization of Matchings

@ Polyhedral characterization of matchings on T
(assuming triangle inequality) [Edmonds, Johnson 1973]

g © > Yex1, ¥ScV,|SNT|odd
o \O ecs(S)
«— " y e RE

@ Call a feasible solution a fractional matching;
its cost upper-bounds c(M)
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Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
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Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
@ Take y := axgs + Bx* fora = = %
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Proof of 5/3-approximation
@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution

@ Take y := axs + Bx* fora:ﬁ:%

S Ye=1, ¥ScV,|SNT|odd
(Matching) ecs(S)

E
y e RE
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Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution

@ Takey :=ayxyg + px*fora == %
| x7 x* y
LB on T-odd s-f cut capacities 1
LB on nonseparating cut capacities 2
(Held-Karp) > xe =1, ¥ScCV,|{s,t}nS| =1
ecs(S)
> xe>2, VSC V., |{s,t}NS|#1,8#0
ecs(S)
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Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
@ Takey :=ayxyg + px*fora ==

LB on T-odd s-f cut capacities 1
LB on nonseparating cut capacities | 1 2
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Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
@ Takey :=ayxyg + px*fora ==

*
<

1
3
\ Xz X
LB on T-odd s-f cut capacities 2 1
LB on nonseparating cut capacities | 1 2

Lemma _
An s-t cut (U,U) thatis odd w.r.t. T (i.e., |UnN T|is odd) has at
least two tree edges in it

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
@ Takey :=ayxyg + px*fora ==

LB on T-odd s-f cut capacities 2 1 2a+p=1
LB on nonseparating cut capacities | 1 2 a+28=1

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Proof of 5/3-approximation

@ Want: a fractional matching y with E[c(y)] < %c(x*)
x* := optimal Held-Karp solution
@ Takey :=ayxyg + px*fora ==

LB on T-odd s-f cut capacities 2 1 2a+p=1
LB on nonseparating cut capacities | 1 2 a+28=1

® E[c(y)] = aEle(x7)] + Be(x™) = (a + B)e(x”)
© E[c(H)] < Elc(7)] + E[c(M)] < (1 + o+ B)e(x7)

Theorem
The given algorithm is a (1 + « + [)-approximation algorithm
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Improvement upon 5/3

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+4p
LB on nonseparating cut capacities | 1 2 a+2p3

@ Perturb o and 3
e In particular, decrease a by 2¢ and increase (5 by e
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Improvement upon 5/3

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+4p
LB on nonseparating cut capacities | 1 2 a+2p3

@ Perturb o and 3
e In particular, decrease a by 2¢ and increase (5 by e

@ E[c(y)] = (a + B)c(x*) decreases by ec(x*)
@ o + 2 unchanged; nonseparating cuts remain satisfied

@ T-odd s-t cuts with small capacity may become violated
o If violated, by at most d := O(e)
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Improvement upon 5/3

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+4p
LB on nonseparating cut capacities | 1 2 a+2p3

@ Perturb o and 3
e In particular, decrease a by 2¢ and increase (5 by e

@ E[c(y)] = (a + B)c(x*) decreases by ec(x*)
@ o + 2 unchanged; nonseparating cuts remain satisfied

@ T-odd s-tf cuts with small capacity may become violated
o If violated, by at most d := O(e)

Definition B
For0 < 7 <1, a r-narrow cut (U, U) is an s-t cut £V
with Zeeé(U) X5 <147
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd
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@ 7-narrow cuts may be violated when they are T-odd

Lemma )
For any t-narrow cut (U, U), Pr[[UNT| odd] <
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd

Lemma )
For any t-narrow cut (U, U), Pr[[UNT| odd] <

Proof.

@ Expected number of tree edges in the cutis < 1 + 7:
Ze@ Prlee 7] = Zeemj X5 <147

@ Prlec 7] =x}
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd

Lemma )
For any t-narrow cut (U, U), Pr[[UNT| odd] <

Proof.

@ Expected number of tree edges in the cutis < 1 + 7:
Ze@ Prlee 7] = Zeed(U X5 <147
e (U,U) has at least one tree edge in it
@ If (U,U)is odd w.r.t. T, it must have another tree edge in it
L]
@ Prlec 7] =x}
Lemma

An s-t cut (U,U) that is odd w.r.t. T (i.e., |U N T| is odd) has at
least two tree edges in it
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd
@ This happens with probability smaller than 7 = O(e)
@ When this happens, the cut will have deficiency d = O(e)
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd
@ This happens with probability smaller than 7 = O(e)
@ When this happens, the cut will have deficiency d = O(e)

@ Suppose edge sets of 7-narrow cuts were disjoint
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd
@ This happens with probability smaller than 7 = O(e)
@ When this happens, the cut will have deficiency d = O(e)

@ Suppose edge sets of 7-narrow cuts were disjoint
@ y:=axzs + X" +r
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Improvement upon 5/3

@ 7-narrow cuts may be violated when they are T-odd
@ This happens with probability smaller than 7 = O(e)
@ When this happens, the cut will have deficiency d = O(e)

@ Suppose edge sets of 7-narrow cuts were disjoint
@y :=axgs+BX* +r
@ For each e, if e is in a 7-narrow cut that is odd w.r.t. T,
set re :=dx;
Claim y is a fractional matching
Claim E[c(r)] < drec(x*)
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Improvement upon 5/3

@ 7-narrow cuts are not disjoint
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Improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma _
T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs e U,W, eitherU c WorW c U.

@
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Improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

®
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Improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

Lemma
Each T-narrow cut has a “representative” edge set of capacity
> 1 — 7, and they are mutually disjoint
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The Main Result

Theorem

Best-of-many Christofides’ algorithm is a deterministic
¢-approximation algorithm for the s-t path TSP for the general
metric, where ¢ = 1%@ < 1.6181 is the golden ratio
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Open Questions

@ Circuit TSP

e Is there a better than 3/2-approximation algorithm?
e Do our techniques extend to the circuit TSP?
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Thank you.



