Improving Christofides' Algorithm for the s-t Path TSP

Hyung-Chan An

Joint work with Robert Kleinberg and David B. Shmoys

- (Circuit) Traveling Salesman Problem
 - Given a weighted graph G = (V, E) ($c : E \to \mathbb{R}_+$), find a minimum Hamiltonian circuit

Figure from [Dantzig, Fulkerson, Johnson 1954].

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) ($c : E \to \mathbb{R}_+$), find a minimum Hamiltonian circuit
 - Triangle inequality holds
 or
 Multiple visits to the same vertex allowed
 - NP-hard
 - Christofides (1976) gave a 3/2-approximation algorithm

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) ($c : E \to \mathbb{R}_+$), find a minimum Hamiltonian circuit
 - Triangle inequality holds
 or
 Multiple visits to the same vertex allowed
 - NP-hard
 - Christofides (1976) gave a 3/2-approximation algorithm
 - Best known

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

- Metric s-t path TSP
 - Given a weighted graph G = (V, E) $(c : E \to \mathbb{R}_+)$ with endpoints $s, t \in V$, find a minimum s-t Hamiltonian path
 - Triangle inequality holds
 or
 Multiple visits to the same vertex allowed
 - NP-hard
 - Hoogeveen (1991) showed that Christofides' algorithm is a 5/3-approximation algorithm and this bound is tight

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

Our Main Result

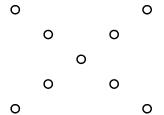
Theorem

There exists a deterministic ϕ -approximation algorithm for the metric s-t path TSP, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio $(\phi < 1.6181)$

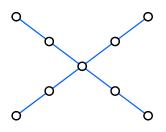
Outline

- Christofides' algorithm
- Linear programming relaxation
- LP-based analysis of Christofides' algorithm
- Path-variant relaxation
- Our algorithm
- Analysis
 - First analysis: proof of 5/3-approximation
 - Second analysis: first improvement upon 5/3
 - Last analysis: pushing towards the golden ratio
- Application & open questions

Christofides' algorithm



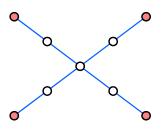
- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}



Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

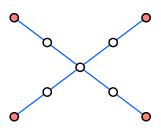
- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in \$\mathcal{T}_{\text{min}}\$



Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in S_{min}
 - Find a minimum *T*-join *J*

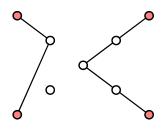


Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in S_{min}
 - Find a minimum *T*-join *J*

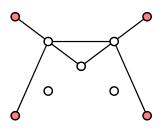


Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - ullet Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in Tmin
 - Find a minimum *T*-join *J*

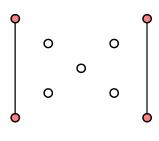


Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in Tmin
 - Find a minimum *T*-join *J*

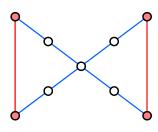


Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in Tmin
 - Find a minimum *T*-join *J*

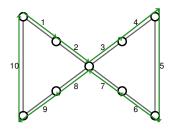


Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - ullet Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in \$\mathcal{T}_{\text{min}}\$
 - Find a minimum *T*-join *J*



Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of odd-degree vertices in S_{min}
 - Find a minimum *T*-join *J*

 - Shortcut it into a Hamiltonian circuit H



Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

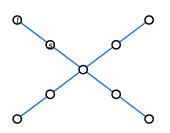
Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in \$\mathcal{T}_{min}\$
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of $\mathscr{T}_{min} \cup J$
 - Shortcut it into an s-t Hamiltonian path

Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum *T*-join *J*

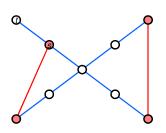
 - Shortcut it into an s-t Hamiltonian path



Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T_{min}
 - Find a minimum T-join J

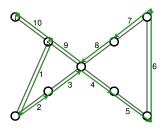
 - Shortcut it into an s-t Hamiltonian path



Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in Tmin
 - Find a minimum *T*-join *J*

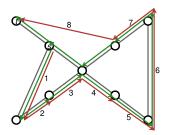
 - Shortcut it into an s-t Hamiltonian path



Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \$\mathcal{T}_{\text{min}}\$
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in Tmin
 - Find a minimum *T*-join *J*

 - Shortcut it into an s-t Hamiltonian path



Theorem

Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

- Path-variant Christofides' algorithm
 - 5/3-approximation algorithm [Hoogeveen 1991]
 - This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
 - Cost defined by the shortest path metric in an underlying unit-weight graph
 - Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
 - Cost defined by the shortest path metric in an underlying unit-weight graph
 - Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])

 Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
 - Cost defined by the shortest path metric in an underlying unit-weight graph
 - Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])
 - Techniques can be successfully applied to both variants
- Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric
 - Can our techniques be extended to the circuit variant?

LP-based Approximation Algorithms

 Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]

LP-based Approximation Algorithms

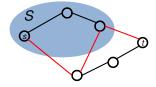
- Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]
- Circuit-variant Christofides' algorithm [Wolsey 1980]

LP-based Approximation Algorithms

- Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]
- Circuit-variant Christofides' algorithm [Wolsey 1980]
- Our algorithm

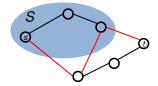
Notation

- Notation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})



Notation

- Notation
 - $\delta(S)$ for $S \subseteq V$ denotes the set of edges in cut (S, \overline{S})

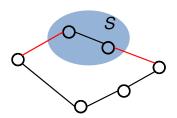


- For $x, y \in \mathbb{R}^E_+$ and $F \subset E$,
- $\circ x(y) := \sum_{e \in E} x_e y_e$
- $\circ x(F) := \sum_{f \in F} x_f$
- ∘ Incidence vector of F is $(\chi_F)_e := \begin{cases} 1 & \text{if } e \in F \\ 0 & \text{otherwise} \end{cases}$

Held-Karp Relaxation

• Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970]) For G = (V, E),

$$\begin{cases} \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ x_e \in \{0, 1\} & \forall e \in E \end{cases}$$

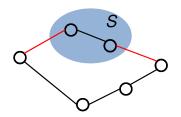


Held-Karp Relaxation

 Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 For G = (V, E),

$$\begin{cases} \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$$

$$x \in \mathbb{R}^E$$



Let x^* be LP optimum; $c(x^*) \le c(OPT)$

Held-Karp Relaxation

- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by $\frac{n-1}{n}$, is in the spanning tree polytope
 - ST polytope of G := $conv\{\chi_{\mathscr{T}}|\mathscr{T} \text{ is a ST of } G\}$

Held-Karp Relaxation

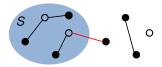
- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by $\frac{n-1}{n}$, is in the spanning tree polytope
 - ST polytope of $G := conv\{\chi_{\mathscr{T}} | \mathscr{T} \text{ is a ST of } G\}$
 - $c(\mathscr{T}_{\min}) \leq c(\frac{n-1}{n}X^*) \leq c(X^*)$

Polyhedral Characterization of *T*-joins

Definition

For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

Polyhedral characterization of T-joins



Polyhedral Characterization of *T*-joins

Definition

For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

Polyhedral characterization of T-joins

Call a feasible solution a fractional T-join;
 its cost upper-bounds c(J)

LP-based Analysis of Christofides' Algorithm

Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.

$$c(\mathcal{T}_{min}) \le c(\frac{n-1}{n}x^*) \le c(x^*)$$

 $y^* := \frac{1}{2}x^*$ is a fractional T -join

$$\begin{cases} \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$$

$$(T\text{-join}) \qquad \begin{cases} 0 \leq X_e \leq 1 & \forall e \in E \\ \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$$

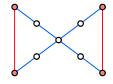
LP-based Analysis of Christofides' Algorithm

Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.

$$c(\mathcal{T}_{\mathsf{min}}) \leq c(\frac{n-1}{n}x^*) \leq c(x^*)$$
 $y^* := \frac{1}{2}x^*$ is a fractional T -join
 $c(J) \leq c(y^*) \leq \frac{1}{2}c(x^*)$
 $c(H) \leq c(\mathcal{T}_{\mathsf{min}} \cup J) \leq c(x^*) + c(y^*) \leq \frac{3}{2}c(x^*) \leq \frac{3}{2}c(\mathsf{OPT})$



Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum
 - $\left[\frac{4}{3}, \frac{3}{2}\right]$; conjectured $\frac{4}{3}$

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum
 - $\left[\frac{4}{3}, \frac{3}{2}\right]$; conjectured $\frac{4}{3}$
- Path-case

•
$$\left[\frac{3}{2}, \frac{1+\sqrt{5}}{2}\right]; \frac{3}{2}$$
?

• Path-variant Held-Karp relaxation For G = (V, E) and $s, t \in V$,

$$\begin{cases} \sum_{e \in \delta(S)} x_e \geq 1, & \forall S \subsetneq V, |\{s,t\} \cap S| = 1 \\ \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, |\{s,t\} \cap S| \neq 1, S \neq \emptyset \\ \sum_{e \in \delta(\{s\})} x_e = \sum_{e \in \delta(\{t\})} x_e = 1 \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \setminus \{s,t\} \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$$

$$x \in \mathbb{R}^E$$

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope
 - A path-variant Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope
 - A path-variant Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]
- Try each of these polynomially many spanning trees

Our Algorithm

- Best-of-Many Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{T}_1, \ldots, \mathcal{T}_k$
 - For each \mathcal{T}_i :
 - Let T_i be the set of vertices with "wrong" parity of degree: i.e., T_i is the set of even-degree endpoints and other odd-degree vertices in S_i
 - Find a minimum T_i -join J_i
 - Find an *s-t* Eulerian path of $\mathcal{T}_i \cup J_i$
 - Shortcut it into an s-t Hamiltonian path H_i
 - Output the best Hamiltonian path

Randomized algorithm for notational convenience

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{I}_1, \ldots, \mathcal{I}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathcal{I}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample $\mathscr T$ by choosing $\mathscr T_i$ with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathcal{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{I}_1, \ldots, \mathcal{I}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathcal{I}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of $\mathcal{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H
- $E[c(H)] \le \rho \cdot OPT \implies$ Best-of-Many Christofides' Algorithm is ρ -approx. algorithm

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample $\mathscr T$ by choosing $\mathscr T_i$ with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathscr{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H
- $\Pr[e \in \mathscr{T}] = x_e^*$

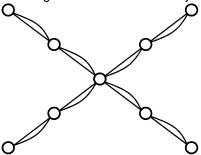
- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathcal{I}_1, \ldots, \mathcal{I}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathcal{I}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample $\mathscr T$ by choosing $\mathscr T_i$ with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree: i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathcal{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H
- $\Pr[e \in \mathscr{T}] = x_e^*$
 - $\mathsf{E}[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)$
 - The rest of the analysis focuses on bounding c(J)

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x^* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$: $x^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^k \lambda_i = 1$
 - Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in T
 - Find a minimum T-join J
 - Find an s-t Eulerian path of $\mathscr{T} \cup J$
 - Shortcut it into an s-t Hamiltonian path H

```
Lemma E[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)
Lemma E[c(J)] \leq \bigstar \cdot c(x^*)
Corollary E[c(H)] \leq E[c(\mathscr{T} \cup J)] \leq (1 + \bigstar)c(x^*)
```

• Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution

- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Circuit case
 - Well-known 2-approximation algorithm can be considered as using MST as a fractional T-join



- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Circuit case
 - Well-known 2-approximation algorithm can be considered as using MST as a fractional T-join
 - Christofides' algorithm uses half the (circuit-variant)
 Held-Karp solution [Wolsey 1980]

- Want: a fractional *T*-join *y* with $E[c(y)] \leq \frac{2}{3}c(x^*)$ $x^* := optimal path-variant Held-Karp solution$
- Is βx^* a fractional T-join for some constant β ?

$$\bullet \ \, \text{Is } \beta x^* \text{ a fractional T-join for some constant } \beta? \\ \begin{cases} \sum_{e \in \delta(S)} x_e \geq 1, & \forall S \subsetneq V, |\{s,t\} \cap S| = 1 \\ \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, |\{s,t\} \cap S| \neq 1, S \neq \emptyset \end{cases} \\ \sum_{e \in \delta(\{s\})} x_e = \sum_{e \in \delta(\{t\})} x_e = 1 \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \setminus \{s,t\} \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases} \\ (T\text{-join}) \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$$

- Want: a fractional T-join y with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Is βx^* a fractional T-join for some constant β ?
 - Yes, for $\beta=1$. The present algorithm is a 2-approximation algorithm: $\mathsf{E}[c(J)] \leq \mathsf{E}[c(\beta x^*)] = \beta c(x^*)$

	X *
LB on s-t cut capacities	1
LB on nonseparating cut capacities	2

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?

	$\chi_{\mathscr{T}}$	X *
LB on s-t cut capacities		1
LB on nonseparating cut capacities		2

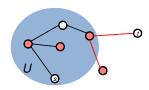
- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathcal{T}}$?

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on <i>T-odd</i> s-t cut capacities		1	_
LB on nonseparating cut capacities		2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.

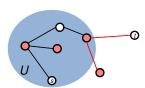


	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on <i>T-odd</i> s-t cut capacities	2	1	_
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional T-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.



Proof. U contains exactly one of s and $t\Rightarrow U$ has even number of odd-degree vertices #edges in $\delta(U)$

$$=\sum_{v\in U}$$
 degree of $v-2\cdot (\#$ edges within $U)$

	$\chi_{\mathscr{T}}$	\boldsymbol{X}^*	
LB on <i>T-odd</i> s-t cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional T-join y with $E[c(y)] \leq \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.

• Yes, for $\alpha = 1$. The present algorithm is a 2-approximation algorithm: $\mathsf{E}[c(J)] \leq \mathsf{E}[c(\alpha \chi_{\mathscr{T}})] = \alpha c(x^*)$

	$\chi_{\mathscr{T}}$	<i>X</i> *	
LB on <i>T-odd</i> s-t cut capacities	2	1	_
LB on nonseparating cut capacities	1	2	

	$\chi_{\mathscr{T}}$	X *	
LB on <i>T</i> -odd <i>s-t</i> cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

	$\chi_{\mathscr{T}}$	X^*	У
·			$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$$

	$\chi_{\mathscr{T}}$	X^*	У
LB on T-odd s-t cut capacities	2	1	$2\alpha + \beta = 1$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$
 - Choose $\alpha = \beta = \frac{1}{3}$
 - The present algorithm is a 5/3-approximation algorithm: $E[c(J)] \le E[c(y)] = (\alpha + \beta)c(x^*) = \frac{2}{3}c(x^*)$

	$\chi_{\mathscr{T}}$	<i>X</i> *	у
LB on T-odd s-t cut capacities			
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

- $\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$
 - Choose $\alpha = \beta = \frac{1}{3}$
 - The present algorithm is a 5/3-approximation algorithm: $E[c(J)] \le E[c(y)] = (\alpha + \beta)c(x^*) = \frac{2}{3}c(x^*)$
- Analysis also works for the original path-variant Christofides' algorithm

First improvement upon 5/3

	$\chi_{\mathscr{T}}$	X^*	У
LB on <i>T</i> -odd <i>s-t</i> cut capacities	2	1	$2\alpha + \beta = 1$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

ullet Perturb lpha and eta

First improvement upon 5/3

	$\chi_{\mathscr{T}}$	\boldsymbol{X}^*	У
LB on <i>T</i> -odd <i>s-t</i> cut capacities	2	1	$2\alpha + \beta = 0.95$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha=0.30$ and $\beta=0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; only *s-t* cuts may be violated by at most $1 (2\alpha + \beta) =: d. d = 0.05$

First improvement upon 5/3

	$\chi_{\mathscr{T}}$	\boldsymbol{X}^*	У
LB on <i>T</i> -odd <i>s-t</i> cut capacities	2	1	$2\alpha + \beta = 0.95$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha=0.30$ and $\beta=0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; only *s-t* cuts may be violated by at most $1 (2\alpha + \beta) =: d. d = 0.05$
- s-t cuts (U, \bar{U}) with large capacity in HK solution are safe: $2\alpha + \beta x^*(\delta(U))$ still large

	$\chi_{\mathscr{T}}$	\boldsymbol{X}^*	У
LB on <i>T</i> -odd <i>s-t</i> cut capacities	2	1	$2\alpha + \beta = 0.95$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

- ullet Perturb lpha and eta
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha=0.30$ and $\beta=0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; only *s-t* cuts may be violated by at most $1 (2\alpha + \beta) =: d. d = 0.05$
- s-t cuts (U, \bar{U}) with large capacity in HK solution are safe: $2\alpha + \beta x^*(\delta(U))$ still large

Definition

For $0 < \tau \le 1$, a τ -narrow cut (U, \bar{U}) is an s-t cut with $x^*(\delta(U)) < 1 + \tau$

•
$$2\alpha + \beta(1+\tau) = 1$$
: $\tau = \frac{1}{7}$

• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

$$\begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$$

• s-t cuts (U, \bar{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Proof.

Expected number of tree edges in the cut is equal to $x^*(\delta(U))$:

$$\mathsf{E}[|\delta(U)\cap\mathscr{T}|] = \sum_{e\in\delta(U)}\mathsf{Pr}[e\in\mathscr{T}] = \sum_{e\in\delta(U)}x_e^* = 1$$

So $|\delta(U) \cap \mathcal{T}|$ is identically 1.

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Lemma

An s-t cut (U, \bar{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \bar{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

- (U, \bar{U}) has at least one tree edge in it
- If (U, \overline{U}) is odd w.r.t. T, it must have another tree edge in it
- ullet Expected number of tree edges in the cut is < 1 + au

$$Pr[|U \cap T| \text{ odd}] < x^*(\delta(U)) - 1 < \tau$$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ-narrow cuts were disjoint

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ -narrow cuts were disjoint
- For each τ -narrow cut (U, \bar{U}) , define "correction vector" f_U defined as the Held-Karp solution restricted to $\delta(U)$

$$(f_U)_e = \begin{cases} x_e^* & \text{if } e \in \delta(U) \\ 0 & \text{otherwise} \end{cases}$$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ -narrow cuts were disjoint
- For each τ -narrow cut (U, \bar{U}) , define "correction vector" f_U defined as the Held-Karp solution restricted to $\delta(U)$

•
$$y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd}} d \cdot f_U$$

$$\mathsf{E}\left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd}} d \cdot f_U)\right]$$

$$\leq c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U\right)$$

$$\leq d\tau c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} f_U\right) \leq d\tau c(x^*)$$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ -narrow cuts were disjoint
- For each τ -narrow cut (U, \bar{U}) , define "correction vector" f_U defined as the Held-Karp solution restricted to $\delta(U)$

•
$$y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd}} d \cdot f_U$$

$$\mathsf{E}\left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd}} d \cdot f_U)\right]$$

$$\leq c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U\right)$$

$$\leq d\tau c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} f_U\right) \leq d\tau c(x^*)$$

• The present algorithm is a 1.6572-approximation algorithm if τ -narrow cuts were disjoint: $E[c(y)] \le (\alpha + \beta + d\tau)c(x^*)$

ullet au-narrow cuts are not disjoint

 \bullet τ -narrow cuts are not disjoint, but "almost" disjoint

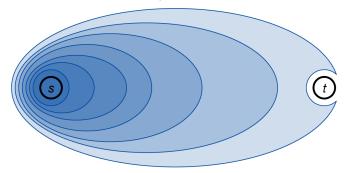
Lemma

au-narrow cuts do not cross: i.e., for au-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

au-narrow cuts do not cross: i.e., for au-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, au-narrow cuts constitute a layered structure.



 \bullet τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

au-narrow cuts do not cross: i.e., for au-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, au-narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

 \bullet τ -narrow cuts are not disjoint, but "almost" disjoint

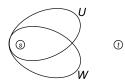
Lemma

au-narrow cuts do not cross: i.e., for au-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, au-narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

$$x^*(\delta(U)) + x^*(\delta(W)) < 2(1+\tau) \le 4$$



 \bullet τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

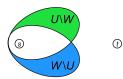
au-narrow cuts do not cross: i.e., for au-narrow cuts (U, \bar{U}) and (W, \bar{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, au-narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

$$x^*(\delta(U)) + x^*(\delta(W)) < 2(1+\tau) \le 4$$

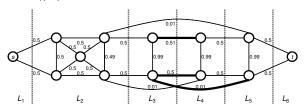
 $x^*(\delta(U)) + x^*(\delta(W)) \ge x^*(\delta(U \setminus W)) + x^*(\delta(W \setminus U)) \ge 2 + 2$



Corollary

There exists a partition L_1, \ldots, L_ℓ of V such that

- $L_1 = \{s\}, L_\ell = \{t\}$, and
- $\{U|(U,\bar{U}) \text{ is } \tau\text{-narrow, } s \in U\} = \{U_i|1 \leq i < \ell\}, \text{ where } U_i := \cup_{k=1}^i L_k$



Corollary

There exists a partition L_1, \ldots, L_ℓ of V such that

- $L_1 = \{s\}, L_\ell = \{t\}, and$
- $\{U|(U,\bar{U}) \text{ is } \tau\text{-narrow, } s \in U\} = \{U_i|1 \leq i < \ell\}, \text{ where } U_i := \cup_{k=1}^i L_k$



Thick edges show F₃

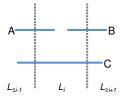
- We choose "representative edge set" $F_i := E(L_i, L_{\geq i+1})$ for each $\delta(U_i)$. We claim:
 - F_i's are disjoint
 - F_i has large capacity

Lemma

$$x^*(F_i) \geq 1 - \frac{\tau}{2}$$

$$A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})),$$

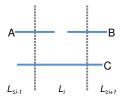
 $C := x^*(E(L_{\leq i-1}, L_{\geq i+1})).$



Lemma

$$x^*(F_i) \geq 1 - \frac{\tau}{2}$$

$$A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})), C := x^*(E(L_{\leq i-1}, L_{\geq i+1})).$$

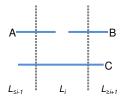


$$B+A \geq 2$$

Lemma

$$x^*(F_i) \geq 1 - \frac{\tau}{2}$$

$$A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})), C := x^*(E(L_{\leq i-1}, L_{\geq i+1})).$$



$$B+A \geq 2$$

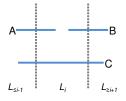
 $B+C \geq 1$

Lemma

$$x^*(F_i) \geq 1 - \frac{\tau}{2}$$

$$A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})),$$

 $C := x^*(E(L_{< i-1}, L_{> i+1})).$



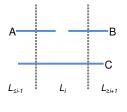
$$B+A \geq 2$$

 $B+C \geq 1$
 $1+\tau > A+C$

Lemma

$$x^*(F_i) \geq 1 - \frac{\tau}{2}$$

$$A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})), C := x^*(E(L_{\leq i-1}, L_{\geq i+1})).$$



$$B+A \geq 2$$

$$B+C \geq 1$$

$$1+\tau > A+C$$

$$2B > 2-\tau$$

$$x^*(F_i) = B > 1 - \frac{\tau}{2}$$

- \bullet au-narrow cuts are the only cuts that may potentially be violated
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$

- extstyle au au au au au au -narrow cuts are the only cuts that may potentially be violated
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i

- extstyle au au au au au au -narrow cuts are the only cuts that may potentially be violated
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i
- $y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd }} d \cdot f_U$ $y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd }} d \cdot \frac{1}{1-\frac{\tau}{2}} \cdot f_U$

- extstyle au au au au au au -narrow cuts are the only cuts that may potentially be violated
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i
- $y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd }} d \cdot f_U$ $y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow},|U\cap T| \text{ odd }} d \cdot \frac{1}{1-\frac{\tau}{2}} \cdot f_U$
- $E[c(y)] \le (\alpha + \beta + d\tau)c(x^*)$ $E[c(y)] \le (\alpha + \beta + \frac{d\tau}{1-\frac{\tau}{2}})c(x^*) \le 0.6577c(x^*)$
- The present algorithm is a 1.6577-approximation algorithm

Tighter anlysis

- Deficiency and the probability that a τ-narrow cut is odd w.r.t. T were separately bounded
- Write them as a function of the cut capacity and simultaneously optimize
- $x^*(F_i) > 1 \frac{\tau}{2} + \frac{x^*(\delta(U_i)) 1}{2}$
- $\frac{9-\sqrt{33}}{2}$ -approximation algorithm ($\frac{9-\sqrt{33}}{2}$ < 1.6278)

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative
 - $\sum_{i}^{n} f_{U_i} \leq x^*$
 - $f_{U_i}(\delta(U_i)) > 1 \frac{\tau}{2}$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For τ -narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ -narrow cuts were disjoint
- For each τ -narrow cut (U, \bar{U}) , define "correction vector" f_U defined as the Held-Karp solution restricted to $\delta(U)$

•
$$y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd}} d \cdot f_U$$

$$\mathsf{E}\left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd}} d \cdot f_U)\right]$$

$$\leq c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U\right)$$

$$\leq d\tau c\left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} f_U\right) \leq d\tau c(x^*)$$

• The present algorithm is a 1.6572-approximation algorithm if τ -narrow cuts were disjoint: $E[c(y)] \le (\alpha + \beta + d\tau)c(x^*)$

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative
 - $\sum_{i}^{n} f_{U_i} \leq x^*$
 - $f_{U_i}(\delta(U_i)) > 1 \frac{\tau}{2}$

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative
 - $\sum_{i} f_{U_i} \leq x^*$
 - $f_{U_i}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative
 - $\sum_{i} f_{U_i} \leq x^*$
 - $f_{U_i}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector
- "Fractional disjointness": ensure the second property directly

Lemma

There exists a set of vectors $\{\hat{f}_{l,l}^*\}_{l=1}^{\ell-1}$ satisfying:

- $\hat{f}_{II}^* \in \mathbb{R}_+^E$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}_{U_i}^*(\delta(U_i)) \geq 1$ for all i

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative
 - $\sum_{i}^{n} f_{U_i} \leq x^*$
 - $\overline{f_{U_i}}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector
- "Fractional disjointness": ensure the second property directly

Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

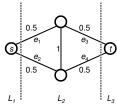
- $\hat{f}^*_{U_i} \in \mathbb{R}_+^E$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}_{U_i}^*(\delta(U_i)) \geq 1$ for all i
- All constraints are linear

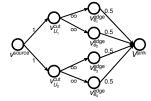
Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

- $\hat{f}^*_{U_i} \in \mathbb{R}_+^E$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}_{U_i}^*(\delta(U_i)) \geq 1$ for all i

Proof. Consider an auxiliary flow network



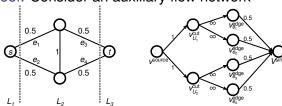


Lemma

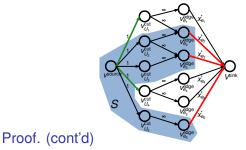
There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

- $\hat{f}^*_{U_i} \in \mathbb{R}_+^E$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}^*_{U_i}(\delta(U_i)) \geq 1$ for all i

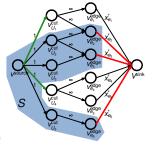
Proof. Consider an auxiliary flow network



- We claim the maximum flow value on this network is $\ell-1$ A maximum flow saturates all the edges from v^{source} to v_{IJ}^{cut}
- Define $(\hat{f}_{IJ}^*)_e$ as the flow from v_{IJ}^{cut} to v_e^{edge}

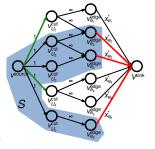


• We claim the maximum flow on this flow network is $\ell-1$ Consider an arbitrary cut (S,\bar{S}) on this flow network



Proof. (cont'd)

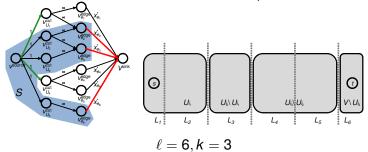
- We claim the maximum flow on this flow network is $\ell-1$ Consider an arbitrary cut (S,\bar{S}) on this flow network
- We can assume w.l.o.g. that, if $v_U^{\mathsf{cut}} \in \mathcal{S}$, then $v_e^{\mathsf{edge}} \in \mathcal{S}$ for all $e \in \delta(U)$



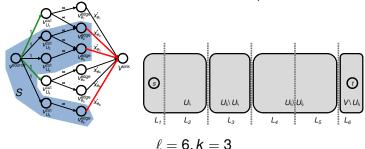
Proof. (cont'd)

- We claim the maximum flow on this flow network is $\ell-1$ Consider an arbitrary cut (S,\bar{S}) on this flow network
- We can assume w.l.o.g. that, if $v_U^{\text{cut}} \in S$, then $v_e^{\text{edge}} \in S$ for all $e \in \delta(U)$
- Want: if k of the τ -narrow cuts are in S, the edges in any of these k τ -narrow cuts have total Held-Karp value $\geq k$

Want: if k of the τ -narrow cuts are in S, the edges in any of these k τ -narrow cuts have total Held-Karp value $\geq k$



Want: if k of the τ -narrow cuts are in S, the edges in any of these k τ -narrow cuts have total Held-Karp value $\geq k$



$$\sum_{e:\exists v_{U}^{\text{cut}} \in S} \sum_{e \in \delta(U)} x_{e}^{*}$$

$$= \frac{1}{2} \left[x^{*}(\delta(U_{i_{1}})) + \sum_{j=2}^{k} x^{*}(\delta(U_{i_{j}} \setminus U_{i_{j-1}})) + x^{*}(\delta(V \setminus U_{i_{k}})) \right]$$

$$\geq \frac{1}{2} \left[1 + 2(k-1) + 1 \right] = k$$

The Main Result

$$\begin{aligned} \mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \sum_{i: |U_i \cap T| \text{ is odd, } 1 \leq i < \ell} \left[1 - \left\{ 2\alpha + \beta \mathbf{x}^* (\delta(U_i)) \right\} \right] \hat{f}_{U_i}^* \\ \text{for } \alpha = 1 - \frac{2}{\sqrt{5}} \text{ and } \beta = \frac{1}{\sqrt{5}} \text{ yields the following:} \end{aligned}$$

Theorem

Best-of-many Christofides' algorithm is a deterministic ϕ -approximation algorithm for the s-t path TSP for the general metric, where $\phi = \frac{1+\sqrt{5}}{2} < 1.6181$ is the golden ratio

- Unit-weight graphical metric case
 - [Oveis Gharan, Saberi, Singh 2011],
 [Mömke, Svensson 2011], [Mucha 2011]
 - Algorithmic use of τ -narrow cuts
 - A 1.5780-approximation algorithm

- Prize-collecting s-t path problem
 - Given a metric cost and vertex prize defined on every vertex, find an s-t path that minimizes the sum of the path cost and the total prize "missed"

- Prize-collecting s-t path problem
 - Given a metric cost and vertex prize defined on every vertex, find an s-t path that minimizes the sum of the path cost and the total prize "missed"
 - [Archer, Bateni, Hajiaghayi, Karloff 2009, 2011],
 [Goemans 2009], [Goemans, Williamson 1995],
 [Bienstock, Goemans, Simchi-Levi, Williamson 1993]
 - A 1.9535-approximation algorithm

- Open questions
 - Improve the performance guarantee?
 - Do our techniques extend to the circuit TSP?

