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Bottleneck Asymmetric Traveling Salesman Problem

Given n vertices and costs between them
Find a Hamiltonian cycle over these n vertices
Minimizing the bottleneck (or maximum-edge) cost
Asymmetric

c(a,b) need not equal to c(b,a)

Metric cost
c(x, z) ≤ c(x, y) + c(y, z)
c defined over the complete graph

NP-hard
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The Four Variants

Bottleneck Min-Sum

Asymmetric

O(logn/ log logn)†
O(logn/ log logn)

O(logn)

Symmetric

2 3/2

No nontrivial performance guarantee known

This paper†

1[Asadpour, Goemans, Mądry, Oveis Gharan and Saberi 10],
[Christofides 76], [Fleischner 74], [Frieze, Galbiati and Maffioli 82], [Lau 81],
[Parker and Rardin 84]
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Intro: Combinatorial Problem
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Intro: Combinatorial Problem

Problem
Given H = (V ,A), either

find a Hamiltonian cycle in Hρ, or
conclude that H is non-Hamiltonian;

where Hρ contains 〈u, v〉 iff H has path of length ≤ ρ from u to v.
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Intro: Combinatorial Problem

Problem
Given H = (V ,A), either

find a Hamiltonian cycle in Hρ, or
conclude that H is non-Hamiltonian;

where Hρ contains 〈u, v〉 iff H has path of length ≤ ρ from u to v.

Reduced from/to the ρ-approximation optimization problem

Purely combinatorial problem statement

Techniques invented in min-sum version not amenable
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Intro: Comparison to the Min-Sum Asymmetric Case

Approximation algorithms

Find a spanning Eulerian circuit with bounded cost

Shortcut the circuit to obtain a Hamiltonian cycle
Eulerian circuit v1−v2−v3−v2−v1−v4−v1
After shortcutting v1−v2−v3− v4−v1
Path v3−v2−v1−v4 is shortcut into a direct arc 〈v3, v4〉

Shortcutting a circuit does not increase its cost
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Intro: Comparison to the Min-Sum Asymmetric Case

Shortcutting may increase objective in bottleneck setting
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Circuit 1 -2 -3 -1 cost 2

Shortcutting becomes the critical step that determines
solution cost

We devise bounded length shortcutting lemma
Constructive proof
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Overview of the Algorithm

Determine some τ∗ such that H is
non-Hamiltonian for all τ < τ∗

Non-Hamiltonicity certificate:
Held-Karp relaxation [HK70]

Find a “nice” weakly-connected
acyclic subgraph

α-thin trees [AGM+10]

Augment the graph into a “nice”
Eulerian graph

Degree-bounded spanning circuit

Shortcut the Eulerian circuit without
introducing too long shortcuts

Bounded length shortcutting
lemma
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α = O(logn/ log logn)
[AGM+10]

k = d4αe

(2k − 1)-approx. alg.
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Preliminaries

Held-Karp relaxation [HK70]

For G = (V ,A),

∑
a∈δ+({v})

xa =
∑

a∈δ−({v})
xa = 1 ∀v ∈ V∑

a∈δ+(S)
xa ≥ 1 ∀S ( V ,S 6= ∅

x ≥ 0.
x ∈ RA

Relaxation: provides certificate
Polynomial-time solvable
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Preliminaries
Thin tree

z ∈ RE , T : a spanning tree of G = (V ,E)

Consider G as weighted by z, T as unit-weighted

Definition ([AGM+10])
T is α-thin if the weight of every cut in T is at most α times its weight
in G.
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representation of α-approx. lower-bounds of cut weights
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An α-thin tree can be considered as a succinct
representation of α-approx. lower-bounds of cut weights
1 + 1 + 1 ≤ 2 · (0.3 + 0.3 + 0.4 + 0.6) = 2 · 1.6
Given T is 2-thin w.r.t. z.
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Preliminaries
Thin tree

z ∈ RE , T : a spanning tree of G = (V ,E)
Consider G as weighted by z, T as unit-weighted

Definition ([AGM+10])
T is α-thin if the weight of every cut in T is at most α times its weight
in G.

x∗: extreme point solution to HK
relaxation
z∗uv := x∗uv + x∗vu
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z ∈ RE , T : a spanning tree of G = (V ,E)
Consider G as weighted by z, T as unit-weighted

Definition ([AGM+10])
T is α-thin if the weight of every cut in T is at most α times its weight
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x∗: extreme point solution to HK
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Theorem ([AGM+10])
There exists a probabilistic algorithm that produces an α-thin tree T
with respect to z∗ with high probability, for α = 4 ln n

ln ln n .
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Algorithm: Bounded Length Shortcutting Lemma
v1, . . . , vm, v1: a (non-simple) spanning circuit on G,
partitioned into P1 = v1 . . . vk , P2 = vk+1 . . . v2k , . . .,
P` = v(`−1)k+1 . . . vm.

Lemma
If, for all t, the union of any t sets in {P1, . . . ,P`} contains at
least t distinct vertices, G2k−1 is Hamiltonian.
Example

21 3 4

Circuit 1-2-3-4-3-2-1 on G,
k = 2
P1 =1 2, P2 =3 4, P3 =3 2

Union of P2 and P3
contains 3(> 2)
distinct vertices.

G3 is Hamiltonian.

Proof

{P1, . . . ,P`} has a transversal: can
choose one vertex from each P with
no duplicates.
Take any subsequence containing
every vertex exactly once and
including the transversal
Any two contiguous vertices in this
subsequence are ≤ 2k-1 arcs apart
Polynomial time
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Algorithm: Bounded Length Shortcutting Lemma
Lemma
v1, . . . , vm, v1: a (non-simple) spanning circuit on G, partitioned into
P1 = v1 . . . vk , P2 = vk+1 . . . v2k , . . ., P` = v(`−1)k+1 . . . vm.
If, for all t, the union of any t sets in {P1, . . . ,P`} contains at least t
distinct vertices, G2k−1 is Hamiltonian.

Definition
A degree-bounded spanning circuit with bound k is a circuit that visits
every vertex at least once and at most k times.

Lemma
Given a degree-bounded spanning circuit on G with bound k, a
Hamiltonian cycle in G2k−1 can be found in polynomial time.

Proof
For any t sets in {P1, . . . ,P`}, sum of
their cardinalities is strictly greater
than (t − 1)k

At least t distinct vertices in union

k

P1 v1 v2 . . . vk
P2 vk+1 vk+2 . . . v2k

...
P` v∗∗ . . . vm
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Overview of the Algorithm

Determine some τ∗ such that H is
non-Hamiltonian for all τ < τ∗

Non-Hamiltonicity certificate:
Held-Karp relaxation [HK70]

Find a “nice” weakly-connected
acyclic subgraph

α-thin trees [AGM+10]

Augment the graph into a “nice”
Eulerian graph

Degree-bounded spanning circuit

Shortcut the Eulerian circuit without
introducing too long shortcuts

Bounded length shortcutting
lemma
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Algorithm: Constructing Deg.-Bdd. Spanning Circuit

x∗: HK solution, z∗ unoriented version
T : α-thin tree w.r.t. z∗, T→: directed version of T

Circulation problem

l(a) =

{
1 if a ∈ T→
0 otherwise

u(a) =

{
2αx∗a + 1 if a ∈ T→
2αx∗a otherwise.

(1)

a
(1) is feasible [AGM+10]
Need an integral solution
Highest degree vertex in the support of HK extreme point
solution can have Θ(n) indegree and outdegree

Simple round-up does not work

Vertex capacities are introduced
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Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Circulation problem instance (cont’d)
Vertex capacities are introduced

v

u1 / l1

u6 / l6

u5 / l5

u4 / l4

u3 / l3

u2 / l2
vi u4 +u5 +u6 / 0 vo

u1 / l1

u3 / l3

u2 / l2

u6 / l6

u5 / l5

u4 / l4

Feasibility unchanged
Contracting split vertices yields solution to original instance

Round up the upper bounds: introduces < 1 error
(degree can be bounded by du4 + u5 + u6e,
not du4e+ du5e+ du6e)
Want: sum of outgoing upper bounds bounded by
O(logn/ log logn)

Hyung-Chan An, Robert D. Kleinberg, David B. Shmoys Approximation Algorithms for the Bottleneck Asymmetric TSP



Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Circulation problem instance (cont’d)
Vertex capacities are introduced

v

u1 / l1

u6 / l6

u5 / l5

u4 / l4

u3 / l3

u2 / l2
vi u4 +u5 +u6 / 0 vo

u1 / l1

u3 / l3

u2 / l2

u6 / l6

u5 / l5

u4 / l4

Feasibility unchanged
Contracting split vertices yields solution to original instance

Round up the upper bounds: introduces < 1 error
(degree can be bounded by du4 + u5 + u6e,
not du4e+ du5e+ du6e)
Want: sum of outgoing upper bounds bounded by
O(logn/ log logn)

Hyung-Chan An, Robert D. Kleinberg, David B. Shmoys Approximation Algorithms for the Bottleneck Asymmetric TSP



Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Circulation problem instance (cont’d)
Vertex capacities are introduced

v

u1 / l1

u6 / l6

u5 / l5

u4 / l4

u3 / l3

u2 / l2
vi u4 +u5 +u6 / 0 vo

u1 / l1

u3 / l3

u2 / l2

u6 / l6

u5 / l5

u4 / l4

Feasibility unchanged
Contracting split vertices yields solution to original instance

Round up the upper bounds: introduces < 1 error
(degree can be bounded by du4 + u5 + u6e,
not du4e+ du5e+ du6e)
Want: sum of outgoing upper bounds bounded by
O(logn/ log logn)

Hyung-Chan An, Robert D. Kleinberg, David B. Shmoys Approximation Algorithms for the Bottleneck Asymmetric TSP



Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Bounding fractional outdegree

u(a) =

{
2αx∗a + 1 if a ∈ T→
2αx∗a otherwise.

Upper bound is the sum of Held-Karp solution scaled by 2α
and tree-induced lower bound

Fractional outdegree of HK solution is exactly 1
Fractional degree of the unoriented version is exactly 2
Maximum degree of α-thin tree is bounded by 2α by the
thinness of singleton cuts

Thus, the fractional degree is bounded by
4α = O(logn/ log logn).
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Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Lemma
Given an α-thin tree w.r.t. to unoriented HK solution, a
degree-bounded spanning circuit with bound d4αe can be found
in polynomial time.

Lemma
Given a degree-bounded spanning circuit on G with bound k, a
Hamiltonian cycle in G2k−1 can be found in polynomial time.

Theorem
There exists a probabilistic O( log n

log log n)-approximation algorithm
for the bottleneck asymmetric TSP under a metric cost.
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Open Question

Question
When G has a feasible Held-Karp relaxation, is G2 Hamiltonian?
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Thank you.


