Approximation Algorithms for the Bottleneck Asymmetric Traveling Salesman Problem

Hyung-Chan An Robert D. Kleinberg David B. Shmoys

Bottleneck Asymmetric Traveling Salesman Problem

- Given n vertices and costs between them
- Find a Hamiltonian cycle over these n vertices
- Minimizing the bottleneck (or maximum-edge) cost

Bottleneck Asymmetric Traveling Salesman Problem

- Given n vertices and costs between them
- Find a Hamiltonian cycle over these n vertices
- Minimizing the bottleneck (or maximum-edge) cost
- Asymmetric
- $c(a, b)$ need not equal to $c(b, a)$
- Metric cost
- $c(x, z) \leq c(x, y)+c(y, z)$
- c defined over the complete graph
- NP-hard

The Four Variants

	Bottleneck	Min-Sum
Asymmetric		
Symmetric		

${ }^{1}$ [Asadpour, Goemans, Mądry, Oveis Gharan and Saberi 10], [Christofides 76], [Fleischner 74], [Frieze, Galbiati and Maffioli 82], [Lau 81], [Parker and Rardin 84]

The Four Variants

	Bottleneck	Min-Sum
Asymmetric		$O(\log n / \log \log n)$
Symmetric	2	$O(\log n)$
		$3 / 2$

- No nontrivial performance guarantee known

[^0]
The Four Variants

	Bottleneck	Min-Sum
Asymmetric	$O(\log n / \log \log n)^{\dagger}$	$O(\log n / \log \log n)$
$O(\log n)$		
Symmetric	2	$3 / 2$

- No nontrivial performance guarantee known
- This paper ${ }^{\dagger}$

[^1]
Intro: Combinatorial Problem

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
Example Suppose oracle access for $\rho=2$

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
Example Suppose oracle access for $\rho=2$

Entire graph

H

$\tau=10$

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
Example Suppose oracle access for $\rho=2$

Entire graph

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
Example Suppose oracle access for $\rho=2$

Entire graph

H^{2}

$\tau=12$

- OPT $\geq \tau$

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
Example Suppose oracle access for $\rho=2$

Entire graph

$\tau=12$

- OPT $\geq \tau$
- Costs of added arcs $\leq 2 \tau$
- $\mathrm{ALG} \leq 2 \tau$

Intro: Combinatorial Problem

Problem

Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
- Reduced from/to the ρ-approximation optimization problem

Intro: Combinatorial Problem

Problem
Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
- Reduced from/to the ρ-approximation optimization problem
- Purely combinatorial problem statement

Intro: Combinatorial Problem

Problem
Given $H=(V, A)$, either

- find a Hamiltonian cycle in H^{ρ}, or
- conclude that H is non-Hamiltonian;
where H^{ρ} contains $\langle u, v\rangle$ iff H has path of length $\leq \rho$ from u to v.
- Reduced from/to the ρ-approximation optimization problem
- Purely combinatorial problem statement
- Techniques invented in min-sum version not amenable

Intro: Comparison to the Min-Sum Asymmetric Case

- Approximation algorithms
- Find a spanning Eulerian circuit with bounded cost
- Shortcut the circuit to obtain a Hamiltonian cycle
- Eulerian circuit $\begin{array}{llr} & v_{1}-v_{2}-v_{3}-v_{2}-v_{1}-v_{4}-v_{1} \\ \text { After shortcutting } & v_{1}-v_{2}-v_{3}-r \\ v_{4}-v_{1}\end{array}$
- Path $v_{3}-v_{2}-v_{1}-v_{4}$ is shortcut into a direct arc $\left\langle v_{3}, v_{4}\right\rangle$

Intro: Comparison to the Min-Sum Asymmetric Case

- Approximation algorithms
- Find a spanning Eulerian circuit with bounded cost
- Shortcut the circuit to obtain a Hamiltonian cycle
- Eulerian circuit $\begin{array}{llr} & v_{1}-v_{2}-v_{3}-v_{2}-v_{1}-v_{4}-v_{1} \\ \text { After shortcutting } & v_{1}-v_{2}-v_{3}- & v_{4}-v_{1}\end{array}$
- Path $v_{3}-v_{2}-v_{1}-v_{4}$ is shortcut into a direct arc $\left\langle v_{3}, v_{4}\right\rangle$
- Shortcutting a circuit does not increase its cost

Intro: Comparison to the Min-Sum Asymmetric Case

- Shortcutting may increase objective in bottleneck setting

$$
\begin{array}{lllll}
\text { Circuit } & 1-3-2-1-3-2-1 & \text { cost } 1 \\
\text { Circuit } 1 & -2 & -3 & -1 & \text { cost } 2
\end{array}
$$

Intro: Comparison to the Min-Sum Asymmetric Case

- Shortcutting may increase objective in bottleneck setting

$$
\begin{array}{lllll}
\text { Circuit } & 1-3-2-1-3-2-1 & \text { cost } 1 \\
\text { Circuit } 1 & -2 & -3 & -1 & \text { cost } 2
\end{array}
$$

- Shortcutting becomes the critical step that determines solution cost

Intro: Comparison to the Min-Sum Asymmetric Case

- Shortcutting may increase objective in bottleneck setting

$$
\begin{array}{lllll}
\text { Circuit } & 1-3-2-1-3-2-1 & \text { cost } 1 \\
\text { Circuit } 1 & -2 & -3 & -1 & \text { cost } 2
\end{array}
$$

- Shortcutting becomes the critical step that determines solution cost
- We devise bounded length shortcutting lemma
- Constructive proof

Overview of the Algorithm

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$

- Find a "nice" weakly-connected acyclic subgraph
- Augment the graph into a "nice"
 Eulerian graph

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$

- Find a "nice" weakly-connected acyclic subgraph
- Augment the graph into a "nice"
 Eulerian graph
- Shortcut the Eulerian circuit without introducing too long shortcuts

1-3-1-2-4-3-1
1-3- 2-4- 1

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]

- Find a "nice" weakly-connected acyclic subgraph
- Augment the graph into a "nice"
 Eulerian graph
- Shortcut the Eulerian circuit without introducing too long shortcuts

1-3-1-2-4-3-1
1-3- 2-4- 1

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]

- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice"
 Eulerian graph
- Shortcut the Eulerian circuit without introducing too long shortcuts

1-3-1-2-4-3-1
1-3- 2-4- 1

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]

- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts

1-3-1-2-4-3-1
1-3- 2-4- 1

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]

- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice"
 Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting lemma

1-3-1-2-4-3-1
1-3- 2-4- 1

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]
- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit $k=\lceil 4 \alpha\rceil$
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting
($2 k-1$)-approx. alg. lemma

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]
- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting lemma

Preliminaries

- Held-Karp relaxation [HK70]

For $G=(V, A)$,

$$
\begin{aligned}
& \begin{cases}\sum_{a \in \delta^{+}(\{v\})} x_{a}=\sum_{a \in \delta^{-}(\{v\})} x_{a}=1 & \forall v \in V \\
\sum_{a \in \delta^{+}(S)} x_{a} \geq 1 & \forall S \subsetneq V, S \neq \emptyset \\
x \geq 0\end{cases} \\
& x \in \mathbb{R}^{A}
\end{aligned}
$$

- Relaxation: provides certificate
- Polynomial-time solvable

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]
- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting lemma

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$
- Consider G as weighted by z, T as unit-weighted

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$
- Consider G as weighted by z, T as unit-weighted

Definition ([AGM ${ }^{+10])}$

T is α-thin if the weight of every cut in T is at most α times its weight in G.

$G=(V, E), z \in \mathbb{R}^{E}$

T

- An α-thin tree can be considered as a succinct representation of α-approx. lower-bounds of cut weights

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$
- Consider G as weighted by z, T as unit-weighted

Definition ([AGM ${ }^{+10]}$)

T is α-thin if the weight of every cut in T is at most α times its weight in G.

- An α-thin tree can be considered as a succinct representation of α-approx. lower-bounds of cut weights
- $1+1+1 \leq 2 \cdot(0.3+0.3+0.4+0.6)=2 \cdot 1.6$
- Given T is 2 -thin w.r.t. z.

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$
- Consider G as weighted by z, T as unit-weighted

Definition ([AGM ${ }^{+10]}$)
T is α-thin if the weight of every cut in T is at most α times its weight in G.

- x^{*} : extreme point solution to HK relaxation

Preliminaries

- Thin tree
- $z \in \mathbb{R}^{E}, T$: a spanning tree of $G=(V, E)$
- Consider G as weighted by z, T as unit-weighted

Definition ([AGM ${ }^{+10])}$

T is α-thin if the weight of every cut in T is at most α times its weight in G.

- x^{*} : extreme point solution to HK relaxation
- $z_{u v}^{*}:=x_{u v}^{*}+x_{v u}^{*}$

Theorem ([AGM ${ }^{+10]}$)

There exists a probabilistic algorithm that produces an α-thin tree T with respect to z^{*} with high probability, for $\alpha=\frac{4 \ln n}{\ln \ln n}$.

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]
- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting lemma

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Proof

Circuit 1-2-3-4-3-2-1 on G,
$k=2$
$P_{1}=12, P_{2}=34, P_{3}=32$

- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=34, P_{3}=32$

Proof

- $\left\{P_{1}, \ldots, P_{\ell}\right\}$ has a transversal: can choose one vertex from each P with no duplicates.
- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=3 \underline{4}, P_{3}=\underline{3} 2$

Proof

- $\left\{P_{1}, \ldots, P_{\ell}\right\}$ has a transversal: can choose one vertex from each P with no duplicates.
- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma

If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=3 \underline{4}, P_{3}=\underline{3} 2$

- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma

If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=3 \underline{4}, P_{3}=\underline{3} 2$

- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma

If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=3 \underline{4}, P_{3}=\underline{3} 2$

- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.
- G^{3} is Hamiltonian.

Proof

- $\left\{P_{1}, \ldots, P_{\ell}\right\}$ has a transversal: can choose one vertex from each P with no duplicates.
- Take any subsequence containing every vertex exactly once and including the transversal
- Any two contiguous vertices in this subsequence are $\leq 2 k-1$ arcs apart

Algorithm: Bounded Length Shortcutting Lemma

- $v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into $P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots$, $P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.

Lemma

If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.

Example

Circuit 1-2-3-4-3-2-1 on G, $k=2$
$P_{1}=12, P_{2}=3 \underline{4}, P_{3}=\underline{3} 2$

- Union of P_{2} and P_{3} contains 3(>2) distinct vertices.
- G^{3} is Hamiltonian.

Proof

- $\left\{P_{1}, \ldots, P_{\ell}\right\}$ has a transversal: can choose one vertex from each P with no duplicates.
- Take any subsequence containing every vertex exactly once and including the transversal
- Any two contiguous vertices in this subsequence are $\leq 2 k-1$ arcs apart
- Polynomial time

Algorithm: Bounded Length Shortcutting Lemma
 Lemma

$v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into
$P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots, P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.
Definition
A degree-bounded spanning circuit with bound k is a circuit that visits every vertex at least once and at most k times.

Algorithm: Bounded Length Shortcutting Lemma Lemma

$v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into
$P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots, P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.
Definition
A degree-bounded spanning circuit with bound k is a circuit that visits every vertex at least once and at most k times.

Lemma

Given a degree-bounded spanning circuit on G with bound k, a Hamiltonian cycle in $G^{2 k-1}$ can be found in polynomial time.

Algorithm: Bounded Length Shortcutting Lemma Lemma

$v_{1}, \ldots, v_{m}, v_{1}$: a (non-simple) spanning circuit on G, partitioned into
$P_{1}=v_{1} \ldots v_{k}, P_{2}=v_{k+1} \ldots v_{2 k}, \ldots, P_{\ell}=v_{(\ell-1) k+1} \ldots v_{m}$.
If, for all t, the union of any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$ contains at least t distinct vertices, $G^{2 k-1}$ is Hamiltonian.
Definition
A degree-bounded spanning circuit with bound k is a circuit that visits every vertex at least once and at most k times.

Lemma

Given a degree-bounded spanning circuit on G with bound k, a Hamiltonian cycle in $G^{2 k-1}$ can be found in polynomial time.

Proof

- For any t sets in $\left\{P_{1}, \ldots, P_{\ell}\right\}$, sum of their cardinalities is strictly greater

Overview of the Algorithm

- Determine some τ^{*} such that H is non-Hamiltonian for all $\tau<\tau^{*}$
- Non-Hamiltonicity certificate: Held-Karp relaxation [HK70]
- Find a "nice" weakly-connected acyclic subgraph
- α-thin trees [AGM ${ }^{+}$10]
- Augment the graph into a "nice" Eulerian graph
- Degree-bounded spanning circuit
- Shortcut the Eulerian circuit without introducing too long shortcuts
- Bounded length shortcutting lemma

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- x^{*} : HK solution, z^{*} unoriented version
- T : α-thin tree w.r.t. z^{*}, T_{\rightarrow} : directed version of T

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- x^{*} : HK solution, z^{*} unoriented version
- $T: \alpha$-thin tree w.r.t. z^{*}, T_{\rightarrow} : directed version of T
- Circulation problem

$$
\begin{align*}
& I(a)= \begin{cases}1 & \text { if } a \in T_{\rightarrow} \\
0 & \text { otherwise }\end{cases} \\
& u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\
2 \alpha x_{a}^{*} & \text { otherwise } .\end{cases} \tag{1}
\end{align*}
$$

- (1) is feasible [AGM ${ }^{+} 10$]

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- x^{*} : HK solution, z^{*} unoriented version
- $T: \alpha$-thin tree w.r.t. z^{*}, T_{\rightarrow} : directed version of T
- Circulation problem

$$
\begin{align*}
& I(a)= \begin{cases}1 & \text { if } a \in T_{\rightarrow} \\
0 & \text { otherwise }\end{cases} \\
& u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\
2 \alpha x_{a}^{*} & \text { otherwise. }\end{cases} \tag{1}
\end{align*}
$$

- (1) is feasible [AGM ${ }^{+} 10$]
- Need an integral solution
- Highest degree vertex in the support of HK extreme point solution can have $\Theta(n)$ indegree and outdegree
- Simple round-up does not work

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- x^{*} : HK solution, z^{*} unoriented version
- $T: \alpha$-thin tree w.r.t. z^{*}, T_{\rightarrow} : directed version of T
- Circulation problem

$$
\begin{align*}
& I(a)= \begin{cases}1 & \text { if } a \in T_{\rightarrow} \\
0 & \text { otherwise }\end{cases} \\
& u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\
2 \alpha x_{a}^{*} & \text { otherwise. }\end{cases} \tag{1}
\end{align*}
$$

- (1) is feasible [AGM ${ }^{+} 10$]
- Need an integral solution
- Highest degree vertex in the support of HK extreme point solution can have $\Theta(n)$ indegree and outdegree
- Simple round-up does not work
- Vertex capacities are introduced

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Circulation problem instance (cont'd)
- Vertex capacities are introduced

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Circulation problem instance (cont'd)
- Vertex capacities are introduced

- Feasibility unchanged
- Contracting split vertices yields solution to original instance

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Circulation problem instance (cont'd)
- Vertex capacities are introduced

- Feasibility unchanged
- Contracting split vertices yields solution to original instance
- Round up the upper bounds: introduces <1 error (degree can be bounded by $\left\lceil u_{4}+u_{5}+u_{6}\right\rceil$, not $\left.\left\lceil u_{4}\right\rceil+\left\lceil u_{5}\right\rceil+\left\lceil u_{6}\right\rceil\right)$
- Want: sum of outgoing upper bounds bounded by $O(\log n / \log \log n)$

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Bounding fractional outdegree

$$
u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\ 2 \alpha x_{a}^{*} & \text { otherwise }\end{cases}
$$

- Upper bound is the sum of Held-Karp solution scaled by 2α and tree-induced lower bound

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Bounding fractional outdegree

$$
u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\ 2 \alpha x_{a}^{*} & \text { otherwise }\end{cases}
$$

- Upper bound is the sum of Held-Karp solution scaled by 2α and tree-induced lower bound
- Fractional outdegree of HK solution is exactly 1

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Bounding fractional outdegree

$$
u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\ 2 \alpha x_{a}^{*} & \text { otherwise }\end{cases}
$$

- Upper bound is the sum of Held-Karp solution scaled by 2α and tree-induced lower bound
- Fractional outdegree of HK solution is exactly 1
- Fractional degree of the unoriented version is exactly 2
- Maximum degree of α-thin tree is bounded by 2α by the thinness of singleton cuts

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

- Bounding fractional outdegree

$$
u(a)= \begin{cases}2 \alpha x_{a}^{*}+1 & \text { if } a \in T_{\rightarrow} \\ 2 \alpha x_{a}^{*} & \text { otherwise }\end{cases}
$$

- Upper bound is the sum of Held-Karp solution scaled by 2α and tree-induced lower bound
- Fractional outdegree of HK solution is exactly 1
- Fractional degree of the unoriented version is exactly 2
- Maximum degree of α-thin tree is bounded by 2α by the thinness of singleton cuts
- Thus, the fractional degree is bounded by $4 \alpha=O(\log n / \log \log n)$.

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Lemma
Given an α-thin tree w.r.t. to unoriented HK solution, a degree-bounded spanning circuit with bound $\lceil 4 \alpha\rceil$ can be found in polynomial time.

Algorithm: Constructing Deg.-Bdd. Spanning Circuit

Lemma
Given an α-thin tree w.r.t. to unoriented HK solution, a degree-bounded spanning circuit with bound $\lceil 4 \alpha\rceil$ can be found in polynomial time.

Lemma
Given a degree-bounded spanning circuit on G with bound k, a Hamiltonian cycle in $G^{2 k-1}$ can be found in polynomial time.

Theorem

There exists a probabilistic $O\left(\frac{\log n}{\log \log n}\right)$-approximation algorithm for the bottleneck asymmetric TSP under a metric cost.

Open Question

Open Question

Question
 When G has a feasible Held-Karp relaxation, is G^{2} Hamiltonian?

Thank you.

[^0]: ${ }^{1}$ [Asadpour, Goemans, Mądry, Oveis Gharan and Saberi 10], [Christofides 76], [Fleischner 74], [Frieze, Galbiati and Maffioli 82], [Lau 81], [Parker and Rardin 84]

[^1]: ${ }^{1}$ [Asadpour, Goemans, Mądry, Oveis Gharan and Saberi 10], [Christofides 76], [Fleischner 74], [Frieze, Galbiati and Maffioli 82], [Lau 81], [Parker and Rardin 84]

